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IMAGE UNDERSTANDING AND INFORMATION EXTRACTION

ABSTRACT

This report summarizes the results of the research program on Image

Understanding and Information Extraction at Purdue University. The report

covers the period I April 1977 to 30 September 1977.

The objective of our research is to achieve a better understanding of

image structure and to use this knowledge to develop techniques for image

analysis and processing tasks, especially Information extraction. Our emphasis

Is on syntactic decomposition and recognition of imagery based on scene

analysis. It Is our expectation that this research will form a basis for the

development of technology relevant to military applications of machine ex-

traction of information from aircraft and satellite imagery.
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IMAGE UNDERSTANDING AND INFORMATION EXTRACTION

RESEARCH SUMMARY

The objective of our research is to achieve better understanding of Image --

structure and to Improve the capability of Image processing systems to extract

information from imagery and to convey that Information in a useful form. The

results of this research are expected to provide the basis for technology de-

velopment relevant to military applications of machine extraction of Informa-

tion from aircraft and satellite Imagery.

A block diagram of an Image Understanding System is shown in Fig. 1. We

first consider the left side of the block diagram. After the sensor collects

the Image data, the preprocessor may either compress it for storage or trans-

mission or it may attempt to put the data into a form more suitable for analy-

sis. Image segmentation may simply Involve locating objects in the Image or,

for complex scenes, determination of characteristically different regions may

be required. Each of the objects or regions is categorized by the classifier

which may use either classical decision-theoretic methods or some of the more

recently developed syntactic methods. In linguistic terminology, the regions

(objects) are primitives, and the classifier finds attributes for these primi-

tives. Finally, the structural analyzer attempts to determine the spatial,

spectral, and/or temporal relationships among the classified primitives. The

output of the "Structure Analysis" block will be a description (qualitative as

well as quantitative) of the original scene. Notice that the various blocks

in the system are highly interactive. Usually, in analyzing a scene one has

0 to go back and forth through the system several times.

Past research In Image understanding and related areas at both Purdue and

elsewhere has Indicated that scene analysis can be successful only If we re-

strict a priori the class of scenes we are analyzing. This is reflected in the

right side of the block diagram in Fig. 1. A world model is postulated for the

*
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class of scenes at hand. This model Is then used to guide each stage of the

analyzing system. The results of each processing stage can be used In turn

to refine the world model.

Research in image understanding at Purdue concerns with all aspects of

the block diagram in Fig. 1. However, the emphasis will lie in the Inter-

action between the processing stages (left side of Fig. I), in the searching

for suitable world models, and In the interplay between the world model and

the processing stages.

Our research progress during the past six months Is presented in this

report.

Scene

Sentsor

Image
signal

Preprocessing

Ij

Image
Segmntation

I- p ...

Classification

% Structure

Analysis

Description
of Scene

Fig. I An Image Understanding System

lip
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IMAGE SEGMENTATION - We are pursuing several approaches to Image segmentation,

Including edge detection, region growing, and clustering. Some recent results

on edge detection is reported in Salahl and Huang. The method consists of two

steps. In the first step, a statistical test is used to detect edge points.

This is followed by a second step where the edge points are selected and

jointed to form smooth edges by a tree growing and pruning procedure.

1 MAGE ATTRIBUTES - The method of describing shapes by Fourier boundary de-

scriptors are now being applied to the recognition of three-dimensional air-

crafts. Wallace and Wintz describes some very encouraging preliminary results.

IMAGE STRUCTURE - We feel that in many Image analysis and recognition tasks,

a purely syntactic approach Is not adequate. An attempt to inject semantic

considerations Into the syntactic approach Is presented by Tang and Huang.

The work on the syntactic description of shapes continues; some results of

airplane identification are described by Fu and You.

IMAGE RECOGNITION - Our work in this area concentrates on the use of con-

textual Information to Increase classification accuracy. Two reports are pre-

sented (Kit and Swain, and Yu and Fu).

PREPROCESSING - Many Image processing problems call for two-dimensional re-

cursive filters. In designing these filters, the test of stability is a key

issue. O'Connor and Huang have developed several very efficient algorithms of

testing stability.

APPLICATIONS - We are heavily Involved in two mission-oriented projects. The

first is the recognition of tactical targets in FLIR images which we are work-

ing on in collaboration with Honeywell (Carlton and Mitchell). The second is

the tracking of moving targets in collaboration with the U.S. Army White Sand

Missile Range (Mitchell).

6D
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IMPLEMENTATION - As we get into more mission-oriented projects where real-

time processing is Important, we begin to feel the Inadequacy of general- 0

purpose serially-processing computers. Therefore, we are studying computer

architectures for Image processing. Some considerations are presented by

Fu and Keng.

9

9
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EDGE DETECTION AND SMOOTHING

A. Salahi and T. S. Huang

I NTRODUCT ION

In [] a test for edge detection was described. In this report we shall

describe another algorithm which removes cracks and parasitic branches and

fills missed edges.

DESCRIPTION OF SMOOTHING ALGORITHM

I A scanner scans the picture (according to some processing sequence) to 4 j

find a starting point for an "edge follower" then stores the address of this

point in R and pushes this address into some stack; say stack 2 which edge

follower will use to pick up the starting point to follow the edge.

II Stack 2 will be popped up to give the root of a tree; then a tree will be

Induced into scattered edges around this point by using a breadth search method

(B. S. M.) [21. The expand part of B.S.M. will be described later. This tree

will be expanded through depth < limit; then the tree will be pruned and re-

maining leaves of tree will be pushed into stack 2 and part II ill be repeat-

ed until stack 2 becomes empty. 0

III Scanner will be resumed from next point to R; If it finds another start-

ing point, it stores that point Into R and pushes its address into stack 2

and will go to (11); if it exhausts all the picture points then It will stop.

Pruning a tree

To prune a tree (Fig. 1) we use a very simple way:

1. Mark the leaves with a maximum depth of the tree with "V"

2. For each node with "-" change Its "-. into "" and put a "-" into Its

predecessor node (if it exists)

3. If there is no node with ,," in the tree, then remove all nodes with-

out any ",+," mark

L "
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PROCESSING SEQUENCE

Because edge smoothing through edge fc'lowing is a sequential operation,
0

the sequence of processing of different points (to find the starting point for

an edge follower) has some effect although negligible on final results. By

processing sequence we mean a one to one mapping from a two dimensional
0

addressing into a linear addressing. Let I -{l.2.... IRWI, J - {1,2,...ICN}

K = {l,2,...IRW-ICNI and let 6 = (IRW, ICN, i0,JO) where IRW, ICN are the

number of rows and columns In digitized picture and (i0,Jo) be the starting

point. For simplicity let (i0 ,jo) - (1,1), then processing sequence will be

IXJ *. K

Some Important examples are

I (ij) - (i-I) ICN + j
e

2* (Ij) . (j-1) IRW + I

e S(1-1) ICN + i IIs odd

1i ICN - J+l I is even

((j-1) IRW + I j is odd

4
211

[IRW - i+l j is even

Subroutine next in our algorithm uses to find the next point for processing.

Subroutine expand In our algorithm generates the successor nodes of each node

and will be discussed later.

DATA STRUCTURE

Because the technical description of our algorithm depends on data

*- - - - - - - -- - . 4,

I
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Picture Points

C " A three bit data structure is sufficient to represent each point of -

picture

d 2  d1I do0

d(i,J) I0
Fig. 2

I if there Is a vertical edge between (1,j) and (i,j+l)

Sotherwise

d1(i j - If there is a horizontal edge between (ij) and (i+l,j)

d 10,) 10otherwise

d, point (ij) has already been reached by edge followers

d2 0oj) - otherwise

One stackandone linear array namely stack 2 and A(ISS) will be used for edge

follower and array A stores the tree in a layered form. Data structure for

both stack 2 and array A are the same(Fig. 3.) After the tree was expanded and

stored and pruned the content of array A will be similar to a new program;

4 namely we can simulate a processor which accepts its Instructions from array A S

and performs picture smoothing.

predecessor j i $ IRC Dir Con

12 12 12 1 1 2 1

Fig. 3
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(a) Con: Partial field Con is one bit;itshowsedge approached point

(i,J) through ieal (Con- 1) or Imaginary edge (Con-0) Fig. 4. -

(lij) (lSi) 
-

Con 0 Con= I"

Fig. 4

(b) Dir: Edge follower can move in four directions (Fig. 5). Dir partial

field is two bits and contains the direction edge follower used to

move to point (ij).

S

(igj) (i.j) (ij) (j)

Dir Dir Dir -2 DIr 3

Fig. 5

i

(c) IRC is one bit

I means this edge should remain in final image

IRC - m

to means this edge should be removed

(d) $ is one bit and it has been used as a separator of different layers

of array A; all members of a layer have the same depth in a tree.

(e) (i,j) Is the address of a point in a digitized picture.

(f) predecessor,points to predecessor of each node In Array A.

I



ALGORITHM FOR SMOOTHING

Procedure Smooth (d, IRW, ICN, Limit) - -

Integer Array d[I: IRW, I: ICN], A[1:200], STACK 2 [1:200];

Integer I, J, IR, JR, ICN, IRW, Limit, Z, PTR, PR2, Depth, ISWO;

Switch V: - LL, LAI, LL, LA2, LL, LA3, LL, LA4, LAS, LL, LA6, LL, LA7, -

LL, LA8, LL;

Label L, L2, L3, L4, L5, L6, L7, 18;

Comment•

Algorithm has been written in Semi-Algol to be more descriptive;

Comment

Array d is picture, A is linear array, STACK 2 is stack;

LI: (IR,JR): - (1,1);

L2: (1,J) :- (IR,JR);

L3: (I,J) : - Next (I,J);

If (KJ) > (IRW, ICN))Then Go to 18;

If (do(1,J) v d (1,J)) A 7(l,J) - 1 Then

begin

(IRJR): - (,J); d2 (I,J): - 1; ISWO:- 0;

Lf d0(1,J) - I Then [0,I,J,0,0,3,1] -STACK 2 else

[O,I,J-I, 0,0,3,0] - Stack 2 0

end

else Go To 13;

L4: depth: - 0; PTR: - 0; Stack 2 + A(l); $ - A(2); Z:- 2; S

L5: PTR: - PTR + 1;

If A(PTR) - $ Then
m S
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begin

If PTR - Z Then

begin

Z: Z-l;

If ISWO 0 0 Then

begin

IRH: - 1; Go'To L6

end

else

begin

IRN: - 0; Go To L6

end

end

else

:1

depth: -depth +1; 1;

If depth - Limit Then

begin IRH: - 1; Go To L6 end else

begin z: - Z+I; A(Z) 4 $; Go To L6 end

end

end

else

begin expand (A, PTR, Z); Go To L5 end;

S
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L6: for IRVS: - Z Step - I until I do

begin

If A(IRVS) - $ Then

beg in

depth: -depth - ;

IRH: - 0

ond

else

begin

If IRH- I Then__i
* begin

If depth Limit Then

begin Stack 2 4 A(IRVS) end;

A(IRVS): - A(IRVS). OR. 8

end;

KI: - A(IRVS), AND. 8;

If Ki g0 0 Then

begin

IZX: - predecessor (A(PTR));

If IZX 0 0 Then g

A(IZX): - A(IZX). OR. 8

end ;

K2: - A(IRVS).AND. 15;

Go To V(K2+I);

0V

U U
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LAI: d(l,j): - d(ij). AND . (-2); Go To LL;

LA2: d(i+lj): - d(l+l,j) . AND . (-1); Go To LL;

LA3: d(i,J+l): - d(i,J+1) . AND . (-2); Go To LL;

LA4: d(i,j): - d(l,j) . AND . (-I); Go To LL;

LA5: d(i,j): - d(i,j) . OR. 2; Go To LL;

LA6: d(i+i,J): - d(1i,J) . OR 1; Go To LL;

LA7: d(i,j+l): - d(i,j+l) . OR . 2; Go To LL;

LA8: d(l,j): = d(i,j) . OR . 1; Go To LL;

LL:

end

end;

L7: If Stack 2 is empty Then Go To L2 else

begin

ISWO: -1; Go To L4

end;

L8:

end

expand (See Fig. 6)

Objective: This algorithm generates the successor nodes of each node in

Breath Search Method.

Let S - (i,J) be a point In whichedge entered withdirectionx; from S it can

go at most to j neighboring points A, B, C.

1P
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Fig. 6
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begin

- 1;-

If SA exists Then begin

If d2 (A) I Then remove SA else [0,A,0,0, < x+3 > *1] Stack 2

end

else

begin

If d2 (A) -0 Then begin

If AD or AE exist Then [0,A,0,0.< X+3 >, 0] Stack 2

end

end-

If SB exists Then begin

If d 2 (B) I Then remove SB else 10,B,0,0, <x >, 1] Stack 2

end

else

begin

If d2 (B) -0 Then begin

If BE or BF or BG exist Then [0,B,0,0,x,01 * -Stack 2

end

end;

If SC exists Then begin

f d2 (C) I Then remove SC else [0,C,0,0, x+l >, 11 Stack 2

end

else

begin
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else

begin-

Mf d2 (B) -0 Then 'beg In

If BE or BF or BG exist Then [OtBtO,O,x,OJ -1 Stack 2

end

endd

If SC exists Then begin

if d2 (C) I Then remove SC else [OsCOO,, < x+l >1 Stack 2

end

else

begin

If d (C) -0 Then begin-2

If CH or CG exists Then [O.C.o.0, < x+l >1-eStack 2

end

eend

aend

<x> means <x>2 xmOd4and0 <<x> <14

* As we already mentioned the final contents of Array Acan be considered as a

new program for smoothing.

*Let our OP Code consist of two bits IRC CCon Then

IRC Con Meaning

0 0 Mop no change
0 1 REMOVE Remove the edge
1 0 Fill Fill the edge

1 1 Mop no change *
The general format of Instruction can be In the following way. <

*OP Dir Address

for example 01 11 6,5 means remove edge which entered to point

(6,5) with direction
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To show the effect of algorithm let Fig. 7 be the result of edge detection.

Table I shows Array A before pruning. Table 2 shows Array A after pruning.

Fig. 8 shows Fig. 7 after smoothing. Contents of A can be translated into

the following program.

PC OP dir Address

22. Nop

21. Nop

20. Fill 0 7,6

19. Nop

18. Nop

17. REMOVE 2 7,3

16, Nop

15. Nop

14. Remove 3 6,3

13. Nop

12. Fill 3 6,4

11. Nop

10. Nop

9. Remove 0 4,5

8. Nop

7. Nop

6. fill 3 4,4

*4. Nap

* 3. Remove 2 3,2

2. mop

1. mop

S
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1 2 4 5
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3 .Fig. 8
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Table I

0

0 3 o 0

2 3

. I 3 2 0 0 2 .

0• 0

5 
1

5. 0 0 001
7 

1

8 6 5 0 0 3 1

_13

1 6 5 00 0 3

___ _ 
-S

11 8 5 3 00 2 0 

12 8 6 . 00o 3 0 -

11 I 6 3 0 0 3 I

15 12 7 4 00o 3 1

16 
1

17 15 7 3 0 0 2 1

15 7 5 0 0 0 1

20 18 7 6 0 0 a 0

21 
1

_ _ _ _. 
. ..__ _ _

22 20 7 7 00 0 I
20
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Table 2

1 0 3 3 01 3 I -

2 1

3 1 3 00 2 I 

4 1 3 4 01 0 1 0

5 1

6 1 4 4 01 3 0

1* 7 ____ __I

8 6 5 s 0 1 3 1

9 6 s 5 o 0 0 

10 I

11 8 5 3 0 2 0

12 8 6 4 0 1 3 0

13 1

141 11 3 00 3 

15 12 7 4 01 3 1

16 -

17 15 7 3 00 2 1

18 15 7 5 01 0 1

19 1

20 6

20 18 7 6 0 I 0 0,

21 1

22 20 7 7 0 1 0 .1
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RESULTS (Figs. 9 and 10)

Let us assume Algorithm I to be the algorithm which we used for statis-

tical edge detection [I] and Algorithm 2 the present algorithm for smoothing.

Let P{ Itl <_ t r I-a and d be the maximum depth of tree which edge

follower uses. Then

Part (a) of each figure is the result of Algorithm 1 under Limit t r

(b) shows (a) after using algorithm 2

S
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SHAPE INFORMATION EXTRACTION

T. Wallace and P. A. Wintz

INTRODUCT I ON

In our last final report [1], a practical shape information extraction

algorithm was presented which detected the presence of an airplane In an
- 0

actual photograph. The classification was made using Fourier descriptors,

which were computed from the boundary of the plane. The boundary was in turn

located by the BLOB region detection algorithm. In our last quarterly report
1

[2], we presented several approaches to Improving and extending this algorithm.

This report describes certain theoretical results of interest in connection

with three dimensional shape recognition using Fourier Descriptors. In
1

addition, preliminary experimental results are presented.

FOURIER DESCRIPTORS

The Three-dimensional Problem
1

The Fourier descriptor (FD) algorithm is a very powerful technique for

classifying shapes, but work to date has concentrated or te two f$mensional

recognition problem. Certain properties of FDs facilitate their use in three

dimensional object detection, providing both an identification of the unknown

object and an estimate of its orientation relative to the camera. Specifi-

cally, It has been shown [3] that averaging the FDs of two different shapes

(frequency domain) yields a FD which will Inverse transform to a shape which

appears to be an "average" contour, Intermediate In shape between the two

original contours. The data base which must be stored to represent a three-

dimensional object may be reduced by using fewer projections, and "inter-

polating" between them in the frequency domain. This approach also enables

a more accurate estimation of the actual orientation In space of the object

relative to the camera. Previous work on this estimation problem [4] kas
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assumed that the orientation of the unknown object is that of the nearest

reference projection. This evidently limits estimation accuracy to the

resolution of the reference projection set.

Interpolation and Sampling Error

One theoretical problem concerns the sample spacing used in sampling 
a

time domain contour. As explained in our last final report, a uniform

sampling strategy is employed in the present algorithm, in order to facill-

tate analysis of a wide variety of shapes. While non-uniform sampling can

result In faster convergence of a FD [3], there are obvious complications

Involved in defining such a sampling strategy for general shapes. When

operations on FDs are made in the frequency domain, there is no guarantee that

the resulting time domain representation will have uniform sampling. Hence,

even if an unknown contour appeared identical to an "average" contour com-

puted by using linear contihnations of known FDs, different sample spacing

could result In some difference between the two FDs.

Consider the case In which an unknown projection lies directly between

two library projections. We postulate that some linear combination of the

library projections A(l) and A(2) will give a good approximation to the un-

known projection X:

X - k(l) • A(]) + k(2) • A(2)

where the k(l) are scalers with k(l) + k(2) - 1.0

and the A(i) and X are FDs. Due to linearity, we can say that this frequency

domain Interpolation FD X has a transform x which can also be computed by

interpolating between space domain vectors using the same coefficients.

x - k(l) • a(i) + k(2) • a(2)

where the a(i) are the IDFTs of the A(i). It Is now obvious that the point

spacing of x need not be uniform, and It Is also easy to compute the point



26

density error for some test Interpolations. We merely compute the vector x

in the space domain using (2), then resample that vector uniformly to get

some x', and finally compute the m.s. distance between x and x'. Experiments

with two shapes whose normalized FDs (NFDs) had a distance of about .3 (a

distance less than .1 Is generally used as a classification threshold) show-

ed a point density error 190 to 200 times less than the distance between the

original NFDs, with k(l) - k(2) - .5. The number of points used in the space

domain vectors had a slight effect on the error, with more densely sampled

vectors producing slightly less error. It can be concluded that this problem

should not have a noticable effect on the algorithm, since in practice, ad-

jacent projections can be expected to have a NFD distance less than .3. This

fact should further minimize the point density error.

The Estimation Problem

In the example discussed above, a projection was assumed to lie directly

between two library projections, and the experiment was performed accordingly.

In general, however, any random projection will not lie on the grid defined

by a library of projections. Hence more than two library projections must be

used to perform the estimation. If a rectangular grid of projections Is used,

it would seem reasonable to do the estimation based on four library pro-

jections, but consider Instead the general case of estimating an n-vector
S

X(k) as a linear combination of m n-vectors (Yi(k), I < I < m:
m

XWk- i a, Yi(k)
i=I

subject to the restriction that

m
E ai - 1.0
i-1

lS
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The following derivation yields an expression for the optimum linear

Mos. estimate of X. iY()+( 1  ~k

1-1 M-1

X(k) E a I Y I(k)-Y m(k)] + YM(k) E a D (k) +Y (k)

where

D I(k) - YvI(k) - Y m(k)

The total m.s. error Is given by:

n )
E = (X(k) - ;k
k-I

n 2 rn-i
E AX (k) -2 X(k) E ai D,(k) + Ym(k)J +

k-i i-i

rn-i 2
[E a, D,(k) + Ym(k)] I
i-I

Differentiating with respect to the a,, setting each resulting equation equal

to zero, and rearranging:

En rn-i n 2i~kE2[X(k)-Y (k)] D()- E E a ()+aD(k
k-I I M I -IjDD(k)

n rn-i n2
E 2[X(k)-Y m(k)] D I(k) - Ea:CE D I(k) D (k) + a ID I(Q)]

k-i rn1 J J- k-i J*

For 1 < I < rn-i.

This expression Is a set of rn-i equations In rn-i unknownis which can be solved

for the unknowns *V a Is then computed from

rn-I
am -1.0- E a I
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Data Reduction

The time required to execute the above estimation algorithm is dependent

on the dimension (n) of the vectors. It Is thus desirable to reduce the di-

mension of the vectors as far as possible without degrading the classifica-

tion performance. Equally Important Is the problem of storage of library

data representing a three-dimensional object. Previous FD classification

results have indicated that there Is no advantage In using more than 30

(complex) coefficients. In fact, quite good results have been obtained with

only 14, although there was a slight degradation In performance when compared

with 30.

The obvious approach is to estimate the autocorrelation matrix or co-

variance matrix of the data, and find the elgenvalues and elgenvectors which

provide optimal data compression. There can be some difficulty In computing

elgenvalues and elgenvectors of a 60 by 60 matrix. (Our feature vector con-

sists of 30 complex coefficients.) One way to reduce the size of this matrix

Is to convert the data to 30 real coefficients. There are two ways that this

might be done. The most obvious way Is to simply take the magnitudes of the

FD coefficients, since classifications based on magnitude Information alone

have been shown to be quite effective. However, If the data has bilateral

symmetry, the associated NFDs should automatically be real. Even If the

data does not have this symmetry, the normalization procedure tends to mini-

mize the magnitudes of the Imaginary parts of the NFD, and correspondingly

minimize their contribution to the classification. Hence virtually all the
U

Information can be preserved by simply taking the real part of each NFD co-

efficient. This is the approach that was used in the experiment described

below. The elgenvalue/elgenvector computation was performed using just the

real parts of the data, but the transformation matrix thus obtained was
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applied to both the real and imaginary parts of the data, yielding a complex

vector In the transformed space.-

Using the covarlance matrix approach results in maximum compression of

the data, but the time to compute the transformed vectors is slightly in-

creased due to the necessity to subtract the mean vector. In cases where ex-

treme data reduction is required, this might be the best approach, but since

the present algorithm requires keeping virtually all the information, the

advantages should be slight. In other words, the information contained in

five to ten coefficients of the transformed space should be essentially the

same regardless of which method is employed. On the other hand the auto-

correlation matrix method is slightly simpler and lends Itself to a more

intuitive Interpretation.

The basic FD classification procedure can be viewed as reducing a shape
o

to circular or elliptical basis shapes of various frequencies. The trans-

formed FD classification procedure makes use of a more efficient set of basis

shapes. Recall that the normalization procedure for FDs results In a dc

component defined to be zero (a(O) - 0), and a fundamental frequency com-

ponent defined to be unity (a(l) - 1.0). Since these coefficients would make

the autocorrelation or covarlance matrix singular, they are not Included in

the original data vectors. They of course contribute nothing to the classi- -

fication process. In order to see what sort of basis shapes we are classify-

Ing with, it is only necessary to Inverse transform each transformed co-

ordinate In turn, and then Insert a fundamental frequency of some appropriate

magnitude. We obtain the FD of some shape, and performing an Inverse FFT

shows us what it looks like.

The experiment originally performed to test the FO algorithm was repeated

to test the data reduction procedure. Recall that 20 low resolution airplane
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silhouettes after the FDs were calculated and normalized. Using a mean

square distance criterion and 30 coefficients, the classification accuracy S

was 95%. After computing elgenvectors and eigenvalues of the autocorrelation

matrix of the NFDs, and making the appropriate linear transformation, a classi-

fication using four transformed coefficients achieved the same figure of 95% S

classification accuracy. Figures 1-4 show the basis shapes associated with

these four coefficients.

THE 3-D ALGORITHM ,

An experiment was performed in which unknown aircraft outlines were

identified and their orientation in space estimated using the above results.

First, a set of aircraft was synthesized using a graphics approach. Three- U

dimensional approximations were constructed for six different aircraft, a

Mirage, a Mig, a Phantom, an F104, an F105, and a B57. Figure 5 shows rep-

resentative images generated by this program. These three dimensional Images

were then rotated through appropriate angles to create a library of pro-

jections. The program was first given the library, and then given randomly

selected orientations to identify.

The experiment of Dudani et al [4] was very similar, but several impor-

tant differences should be noted. First, the data used by Dudanl was con-

structed using model aircraft and a television camera hookup. It might

appear that this is a more realistic approach, as well as a more demanding

experiment than one using graphically generated data. However there are two

problems with this method which the graphical method avoids. First, the

resolution of the mechanical mount used by Dudani was 5 degrees. This rep-

resents an error In data generation which Is avoided by the more exact

graphics approach. Second, since the camera is a finite distance from the

model, parallax problems affect the Images, making the camera Image different
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from the image received from a long distance. Since most practical photo-

graphs of actual aircraft in flight would be taken at a large distance, this

error is undesirable.

In addition to the above considerations, it would probably be easier to

use graphics techniques in a practical system, since accurate graphical rep- 0

resentations constructed from blueprints would probably generate library data

faster and more accurately than model-tv camera setups.

A major advantage of Dudani's approach Is the accuracy of the aircraft

shape. Our graphics program approximates each plane by using about 50-100

(geometric) planes. A more elaborate program could generate an arbitrarily

accurate representation of each aircraft, with corresponding increase in

computation time. The present data gives a reasonably good approximation to

each aircraft, although the small detail is lacking. The effect on the

classifications is probably to Increase their difficulty, since certain minor

features are missing. On the other hand, the data can probably be represented

by fewer projections, due to the reduced complexity.

The basic problem considered by Dudani was classifying unknown aircraft

Images oriented at 5 degree Intervals in a 140 degree by 90 degree sector.

Each aircraft was represented by a library of moment feature vectors computed

from 551 projections within this sector. The classification was performed by

computing distances from a moment feature vector of the unknown Image to the

moment feature vectors of the library images, and then classifying using a

distance-weighted k-nearest neighbor rule. Note that the images used by

Dudani did not contain any mirror Image pairs, and hence are obviously not

all the Images which can be theoretically recognized. In fact, a little re-

flection will convince one that If an object has enough assymetry, it can be

recognized at any angle at all, and that angle Identified. In the case of
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aircraft, there is generally bilateral symmetry, but this does not necessarily

greatly limit the set of angles which can be theoretically recognized.

Our algorithm recognizes aircraft outlines taken from a sector of 180 by

180 degrees, i.e. a hemisphere. Note also that if the angles near the front

view and rear view of the aircraft are deleted, the problem is much easier,

since the shapes vary much more radically when large surfaces are viewed

almost edgewise. Dudani's consideration of only 140 deqrees reduces this

problem. Our algorithm also recognizes random projections. There is no

quantization of random projections corresponding to Dudani's 5 degree incre-

ments. Finally, the first version of our algorithm uses only 99 projections

to represent an aircraft over the hemisphere, which represents a density of

projections 14.3 times less than that used by Dudani.

The actual classification program proceeds as follows. First, the

library of projections is computed, and the NFO of each projection is computed.

The autocorrelation matrix of the NFDs Is computed, and an eigenvalue-eigen-

vector transformation reduces the data dimensionality from 30 complex numbers

to 5 complex numbers. The real parts of the complex numbers are used to com-

pute the autocorrelation matrix, but the complex parts of the transformed co-

efficients are kept to assist In the classification.

Next the m.s. distance from a given unknown contour to each library

vector is computed. The distance to the nearest library contour is saved as

the current best estimate of the minimum m.s. distance achievable. The pro-

Jections adjacent to the nearest library projection are investigated by the

m.s. estimation algorithm described above in an attempt to interpolate be-

tween the library projections.

The interpretation of the estimation coeffici.ents returned by the esti-

mation subroutine is somewhat heuristic, and goes something like this.
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This routine is constrained to return four numbers whose sum is 1.0. It

often happens that two of the vectors being used to estimate the unknown

contour are not very similar to the unknown contour, but are quite simi!ar

to each other. In this case, the estimation coefficients are of similar

magnitudes and opposite sign, such as 2.0 and -2.05. What the estimation

algorithm Is doing Is using the difference vector to help generate the opti-

mum m.s. estimage of the unknown vector. We of course do not want to allow

this kind of estimation, since it is inconsistent with our theory of inter-

polation of FDs. Another thing which is comronly observed when the unknown

vector differs from the library vectors being used to estimate it is a set

of large positive and negative estimation coefficients being returned. This

again just tells us that we cannot expect to find a reasonable interpolated

FD in the sector determined by that set of library projections. •

The heuristic solution to these effects is as follows. First, we quit

looking in a particular sector if the estimation coefficients returned are

too large In magnitude. The algorithm is not very sensitive to this magnitude

and 1.5 to 2.0 is usually used. Also, if two coefficients sum to a small

number (.1), but have relatively large magnitudes (>.5) they are assumed to

be cancelling coefficients, and are deleted from the estimation set. The

estimation process is then repeated with the remaining two vectors being used

to estimate the unknown set. Similarly, any negative coefficients are de-

leted from an estimation, and the remaining two or three are used to repeat

the estimation process. When an estimat^ n of the unknown vector in terms

of two, three, or four adjacent library projection vectors is achieved in

which all the coefficients lie between zero and one, the distance is compar-

ed to the minimum distance achieved so far. If the new distance is less, the

minimum distance Is updated.

I
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This process may be repeated for the k nearest library projections,

where k is optional, and Is generally in the range of 4-10. If the distances

to the nearest k projections are approximately equal, the full k projections

will be investigated. However, projections whose distances are more than 1.5

to 2.0 times greater than the minimum distance are not investigated. Each 0'

library projection has one, two, or four sectors surrounding it which must be

investigated by the estimation subroutine. (If the sector Is In the middle

of the library set, there are four, if it is on the border, there are two,

and if it is in a corner, there is one.) After the desired number of poss-

ible sectors are investigated, there are two possible procedures. The esti-

mated orientation Is taken to be that of the original nearest library vector,

if the estimation fails to improve on this distance. If the estimation pro-

cedure is successful, the orientation is computed by multiplying the orlenta-

tions of the vectors used in the estimation by their appropriate coefficients.

Results to date using 6 aircraft, and classifying 50 unknown images for

each one show a classification accuracy of 80% overall. The classification

accuracy Is about 72% if the estimation routine is not used.

It is expected that this figure can be improved by making use of the

real and imaginary parts of the data when computing the elgenvector trans-

formation matrix. Also, the spacing of library projections used in this ex-

periment Is non-uniform in an attempt to Increase the Fourier space distance

uniformity of the projection set, but it is not optimum. Finally, It may be

necessary to Increase the density of projections somewhat to bring the classi-

fication accuracy up to that achieved by Dudani. The current attempt to get

by with a projection density 14.3 times lower than Dudani may be too optimistic.

Given a chain code representation of the outline of an aircraft pro-

jection, the normalized FD is computed in about 2.76 sec. This time includes
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an FFT which Is of length 512 or 1024, depending on the length of the parti-

cular contour. This normalized FD is then classified and its orientation -

estimated in about 2.38 sec. These times are for a 11/45 with floating

point hardware. The program itself Is written in Fortran and is a research

tool rather than a highly efficient implementation of the algorithm.

SHAPE DETECTION ALGORITHMS

The Blob Algorithm

The BLOB program for segmenting pictures has been used successfully in

classification of multispectral data and more recently In locating aircraft

In ordinary photographic data. The regions located by the BLOB program are

similar in both mean and variance. In order to Improve BLOB performance using

single channel data, we have been reexamining the pixel group statistics used

by BLOB with regard to their applicability to our data.

Mean information is obviously very Important, and correlates well with

distinct regions as defined by human observers. The use of variance in-

formation is not as obvious a procedure, and we have recently been examining

photographic data with a program which replaces each pixel group by its

standard deviation, simulating with BLOB "sees" when it does its variance

test. There are two classes of pictorial data which are evident when var-

lance information Is examined--those which were created by imaging processes

with sufficient dynamic range to represent the highest gray levels, and those

which "clip" at high gray levels.

In the latter case, it Is obvious that variance information is very much

a function of the fraction of the image which was too bright for the imaging

system. In the former case, the surprising result has been obtained that,

with our aerial photographs, the variance Information is largely a duplica-

tion of the mean Information. One might expect that some regions would have

1

-~1
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high brightness and low variance, and some regions low brightness and high

variance, but this is not what generally occurs. In fact, low brightness

regions almost invariably have low variance, and high brightness regions

which may appear completely uniform, as a painted airplane body, have rela- 0tivly ighvariance.

This situation may be partially explained by the logarithmic character-

Istic of the human eye. At low gray levels, variance information is easily

seen as the eye can discriminate between closely spaced shades quite well here.

At high gray levels, variance Information Is obscured by the Insensitivity of

the eye to gray level variations of even tens of gray levels. (Our pictures

are displayed with 256 gray levels.)

After taking the logarithm of a picture, the quality often does not

appear to be Impaired to the human observer, but the standard deviations of

pixel groups appear to be almost random, with a few slightly higher variance

regions which still correspond to the higher mean regions. Taking the loga-

rithm again often does not result in serious degradation of the picture, but

the variance Information appears to be random noise!

We have not discovered a function of the gray levels of two by two pixel

groups which contains useful information for use In segmenting the picture,

and which is not largely a repetition of the mean information. One possibil-

Ity is to retain the geometry (contour-tracing algorithm) of the BLOB program,

and remove the variance test from the program. Using this version of BLOB

perhaps Interactively with the growing and shrinking algorithms described in

our last quarterly report may provide the best overall performance yet.

*
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A SEMANTIC-SYNTACTIC APPROACH TO IMAGE UNDERSTANDING

G. Y. Tang and T. S. Huang

INHTRODUCT ION-

We propose the Injection of semantic features into a context free gram-

mar for the purpose of understanding an Input signal.

A feature vector is assigned to each terminal and to each non-terminal.

A feature transfer function is attached to each production rule. The

feature transfer function transfers features at the right hand side of the

production rule to the left hand side non-terminal. After parsing the feature

vector associated with the root of the derivation tree is sent to a discrimin-

ating function to determine the semantic well-formedness of the sentence.

The acceptance of an input signal is thus based on not only its syntactic

structure but also its semantic meaning.

This approach is applicable to many problems in Image understanding. In

this report we shall present only a simple one-dimensional example.

AN EXAMPLE

We use this approach to find the width of a highway or the location of an

edge in aerial photos. The grey level distribution along a straight line seg-

ment crossing the highway or edge is obtained by a film scanner.

The apriorl knowledge about the signal Is that It looks like one of the

four paradigms a, 1, y, a in Fig. 1. a, 0 are paradigms for Ideal edges. y, a

are the paradigms for highways.

The grammar describing the Ideal paradigms Is:

I: 0 * DAB ; Fl

2 :0 DA ; FIl

3 0 DA ; F7

4:0 -'DB ; F7
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Fig. 1 Three paradigms. a, 0, represent edges.
y, a, represent highways.
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5 : A. aX ; F2

6 : X- D F 3

7 : X D A ; F6

8: B. bY ; F2

9: Y D 0 ; F3

10: YV DB ; F6

11 : A a ; F8

12 : B. b ; F8,

0 Is the start symbol, and a, b, D are terminals.

The transformation, which brings the Ideal paradigms to the realistic

level, is to replace each occurrence of the symbol D by a sentence generated

by the grammar:

TI: D * fD ; F4

T 2: D cD I  ; F ,

T 3: D . dD2  ; F

T4 : D * f ; F5

T5 : D *c F5

T6 : D d ; F5

T7: 7 D dD ; 4

T : D D d F

T9: D f D A

TIO: D2 c D1  ; 4

Til : D 2 c ; F5

T12 : D2  f D ; AF

TU : D f ; F5

T14 : D f ; F5,

D is the start symbol, and c, d, f are terminals.

S

I
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The transfer functions associated with the production rules are defined as:

Fl: A BCD

W ~ C (.)-C()

C(A) C()- if-R2(C€(2 If i2 ( 0, and i2 ¢D) 0 0
R o otherwisen

A (A)- IA (_)-A (,.) I

Ri(A) - Max (Max (i(C) , B/))

F2: A - BC

,(A) = A (_) + A (C)

W ( -( ¢A() + (C)

( C () if c (c)-0
- (B) + C (c))/2 if C (C) 0 0

il (A)- if (8)

R2(A)- R2 (B)

F3: A -8 B

W6'

Ri (A_..)- A ()/B
R2() - w (B) .4

C (A) =C

FAg A B BCE --

(A) :0•

F5: A " B
S0-

c(A)-0o

F (: A (!B

w(A..)m- o

;, ¢_) . ¢n.
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F6- A BC

,1 € ) -, €i _) --

-0 ( if w W~ >,tR2(A) -•

- R2 (C), otherwise
C(A) - (C)

F7: A * BC

R (_. -Max (RI (C), (B)/W (B)
C(A) - C. (C_) J

S() - W (C)
If 2 (c) o '

0 otherwise

F8 :A B

The underscored symbols like A are formal parameters. Symbols with-

atop designate features associated with the formal parameters In parentheses,

e.g. €) Is the Z feature attached to A.

There are five terminals a, b, c, d, f. To each terminal, there are

three features attached. Literally a, b, c, d, and f are five tendencies In

the Input signal. a and c represent-the tendency-of going-up. boand d are

for going-down. f is for flatness. The extent of going-up differentiates a

from c. a stands for long going-up. c stands for short going-up. Similarily

b is long going-down and d is short going-down.
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The three features attached to the terminals are A, W, and C. C refers

to the center of the tendency. W refers to the width of the tendency. A is

a measure of the opposition (long/short). A (a) - I or A (b) - 1 means abso- -

lutely long. A (c) = I or A (d) - I means absolutely short. More specifically,

let Jt() denote the height of the tendency. Then for a, b, we have

(s) = (g(s)/MI - t)/(I-t).

For c, d, we have

A (S) = [ z(S)/Mh-t)/t] + 1.

M Is the maximum height. t M1 is the threshold for discriminating between

"long" and "short".

For non-terminals, there are two more features. These two features are S

defined by the transfer functions.

The final semantic well-formedness test is:

(0) 1 t1  (0) < t3

3
il (0) >t2

i2 (0) > 0.

(0) is the location of the edge or the front edge of the highway. W (0)

is the width. R2 (0) = I indicates edges. R2 (0) = 2 Indicates highway.

ti, t2 , and t3 are preset thresholds.

EXPERIMENTAL RESULTS
T

The experimental results are shown in Figs. 2-7.

Sl
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Fig. 1 Highway is defined by two vertical lines.
The width of highway is 25 pixels. 0
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SYNTACTIC SHAPE RECOGNITION

K. S. Fu and K. C. You

INTRODUCTION

Since the shape of an object , defined as its outer boundary, provides

important information from its structure and local boundary details, the syn-

tactic method (1] is proposed to fully utilize this information for recognition

purpose. In the last report [2], the primitive descriptors and the shape gram-

mar have been discussed. In the following sections of this report, the normal-

ization of the descriptors,, the implementation of a bottom-up parsing scheme

and a recognition experiment are described.

NORMALIZATION OF PRIMITIVE DESCRIPTORS

To recognize a primitive in the boundary, we simply rely on the similar-

* ity measurement between the primitive descriptors. But the digitization in-

troduces different noise to the descriptor with respect to any operation of

rotation, scaling and translation. Normally, the digitization noise introduced

due to rotation Is much more significant than that due to scaling and trans-

lation, because the rotation influences the angle feature significantly.

Although we can apply some smoothing techniques to the boundary vector chain,

the true boundary can not be recovered in all cases completely. We need to

study the possible distribution of the feature values under various rotations

to help constructing a proper similarity measurement.

In following paragraphs, we would concentrate on the influence of rotation

to the shape of information of a curve primitive. The shape Information is

characterized by (C/L, A, S/L), which can be obtained from the descriptor

(,L, A, S) [2].

The normalization function Is defined as follows:

op
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Definition 1:

Normalization function, N, of the curve primitive descriptor is:

N: (C, L, A, S)+ (X, Y, Z)

where X A 0 < X < I

Y = A/2w (angle in terms of revolution)

SZ - /AL, -0.5 < Z < 0.5 for a simple curve segment [2]

An experiment was designed and carried out through following steps to

study the distribution of the normalized variables under different rotations.

Experiment:

I. A picture with clear boundary was scanned with respect to 8 various

rotation angles.

2. Shapes on the digital pictures were traced out and passed through a

smoothing procedure. The vector chains were obtained.

3. Manual extraction of primitives from the chain was performed via an

interactive procedure.

4. The descriptors of the manually extracted primitives were computed

and transformed by N.

5. Studied the distributions of the normalized variables.

The three normalized variables, X, Y, Z, constitute a three-dimensional

space, named 3-D for short. Table 2.1 illustrates the pictures used, the

curve primitives and the corresponding symbols in following figures. Figure

2.1 - 2.3 show the two-dimensional displays of the distributions of descriptors,

each symbol In the figure Indicates the position of a descriptor in 3-D.

Several interesting aspects are observed:

(1) The 3 variables well characterize the shape. Any pair of clusters

can be separated In at least one of the 2-dim. displays.

S
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(2) The number of points Is not enough to reveal a parametric distribution,

but the points within each cluster are considerably close together.

(3) The variable Z - 1- is more spread-oUt than the other two. The reason
AL

might be that the noises in A and L are accumulated In the calculation of S,

which is the summation of the partial products of A and L.

This experimenL is not sufficient to demonstrate the distribution. Besides,

the distribution could be changed with the boundary smoothing techniques.

However, this experiment gives us an idea to construct the similarity measure-
F S

ment.

For the simplicity of computation, we may assume that each curve primi-

tive has a reference point, or prototype point, in the 3-D. The descriptors

of a subchain of vectors are compared with the reference points via a distance

measurement. This distance measurement between two shapes can be defined as

Ds(ql,q 2).

Definition 2:

Ds(q 1,q2) is the distance between two curves q, and q2, where N(q,)

(Xi, Y1, ZI), and Ds(q 1 ,q2)- func (X , X2, Yl' Y2 1 Z1, Z2).

I S
As mentioned in [2], the relative size of a curve segment to the whole

boundary also provides Information for Identifying the primitives. We define

another measurement for the size difference.

Definition 3: - -

Sd(ql,q 2) measures the difference between the relative sizes of two

curves qI and q2 "

T(qi) (Ci/LI, Li/Lio, A, , S [21 21

Sd(ql,q 2) = func (LI/L.1, L2/L20)

10'2/20

p l
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IMPLEMENTATION OF A RECOGNIZER

A conventional syntactic recognizer contains two steps: primitive ex-

traction and parsing. The former step converts the unknown pattern Into a

presentation of primitives and the later step checks the structure of the pre-

sentation with the grammar rules. If the structure fits the r61es, the un-

known pattern is accepted, otherwise rejected.

Our recognizer combines the two steps into one, the advantages would be

explained later. The Earley's parsing algorithm [3] has been modified to

achieve our task. For recognition purpose, we need only the first part of

Earley's algorithm, i.e., the generation of parsing table. The algorithm is

modified so that it accepts the boundary vector chain Instead of the primitive

string as its Input. In other words, the primitives extraction is embedded

In the parsing table generation.

The context-free shape grammar G Is of the form:

G- (VN, VT, P, S) [2] -1
where

VT {S, N'sIN: nonterminals} g

VT - {F's, A'sIF: curve primitive, A: angle primitive)

Before discussing the algorithm, some definitions are given as follows:

Definition e:

v Is a vector

v- - vn Is a closed vector chain.

D(X) is the descriptor of a terminal/nonterminal

X C ( (VN U VT) -S)

D(i,j) denotes the descriptor of the subchain v -v

I
D(X) D(i,j) implies that subchaln v1 -- v. can be recognized as X 0

J

U
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In are the parse lists1' "N n+l
For Item [A- •, 1I] In Ij, 1I < J, means

(I) iff a#cX, (empty string) then a ->vvi~ - - vj

(2) If a=X, then i j

The following assumption makes it possible to recognize a primitive.

Assumption:

D(X) D(iJ), iff D s(N(X), N(i,j))< d, and

Sd(X,(i,J)). < s, where d, s are thresholds.
r II

The Nodified Algorithm

(1) Add [S - a, 1] to I

for all S a in P
r

(2) (a) If [N * - , a] Is in I.
J

B y In P

add [B +. y, J] to I .

(b) [N a., I] is In I.
J

then for all [B ' Ny, k in I

add [8 B N y, k] to

(3) j J+i

If j > n+l go to (i)

For all [Nt a - X0, i] In Ik' 1 < k< J X {F's, Asl

(a) if B 0 X and D(X) a D(kJ) t

then add [N 4 a X *, I] to I.J U W
(b) If 0 -X, D(X) a D(k,J) and D(N) m D(Ij)

then add [N a G X , I] to I

go to (2)

(4) If [S a , l] in I  for some a, then w E L(G)

n •

JU
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START _.

J1

add IS-.O.,1J to I,.r

For Ij,(a) If (W'oC-BpiJ in I., and B-1'? in Padd LB-O,.V ,J) to JI. r

(b) If (N-' -,i in I
then for all (Bk.N,,k] in Ii

add (B-OpPN1,kJ to I .

F U"

For all nN-"-XpiJ in Ik, 1 k J. XtF'sA'sl - S

(-a) If.P=A,D(X)D(k,j), arnd D(N)D(i,j)
add (t-.oX. ,iJ to I •i'

<a -P I

(b) If Psli., and D(X)=D(k,.i.add t (X'pi) toA Ij(G)

Fig. 3.1

* U

I UI
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The following example Illustrates why we combine the primitive extraction _

into the parsing scheme. Let us see the step (3.a). In extracting FI of

[N - - F 1, 10] in I from the vector chain D(F) = D(Koj) and D(N)

D(iO,j) may be valid for both j - j, and j 2 " In other words, subchalns

vo- -v land vKo - - v.j2 are candidates for F, so [N . a F, -i O ] Is in I.j!

and [N .cF 1  , 1] Is in Il. Suppose that J, <j 2 . After the execution of

step (2) for j = J2' [B * 8 N * y, KI] is In I and [B * 8 N * y, K I ] is in

1.2 where K 0 < < K 2  Suppose that y - AIF 2 A2 F3, the execution of

step (3.b) to extract A1 of [B ) 8 N * AIF 2 A2 F3 , KI ] in I .! and I J2 from the

vector chain may find out that D(A!) i D(jl,J 3 ) for any J3 > j,, but D(A,)

D(j 2 ,J 4 ) for some J4 > J21 then only [B 13 N A, * F2A2 F3, K1] is added to I j4.
VJio

That is, the context Information is used to select the subchaln v - - v.

for F and discard V - - v1 . If D(AI) I D(ji,J 3) for some J3 > J,, and

D(A) D(J2 ,J4 for some J4 > J2 ' then [B -* . N A, • F23, KI is In I.J3

and [B * 8 N A1 * F2A2 F3, K] is In I . The execution of step (3.b) to
extract F2 from the vector chain may find out that D(F D(j for any

exrat2 ( 2) j3,. fo an

5L > J2' but u(F 2) (J4,j 6 ) for some J> then only [B 1 N

AIF 2 * A2 F3, K1] Is added to I . That is, the lookahead on the information
of subchain v - - vj5 selects the candidate VKo for F

In fact, the extraction of A's and F's embedded In our parsing is dif-

ferent from the pre-extraction of the primitives without knowing the context

Information. The advantage Is that the extraction would be much more accurate

In a global sense.

EXPERIMENTAL RESULTS: SHAPE RECOGNITION OF THE TOP VIEWS OF AIRPLANES

The main purpose of this experiment Is to testify whether the proposed

method is capable of recognizing shape. The Idea Is to recognize noisy shapes
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from digital Images by using the modified Earley's parsing algorithm with

given models and shape grammarsb

In constructing shape grammars, we must consider how to obtain a better --

segmentation of a shape. Since the picture Is scanned line by line, the con-

vex points of the object are usually the first point hit in the scanning, and

hence, the starting point of the vector chain. Therefore, our grammars and

breaking points, which break the shape into small curve segments, are designed

such that most of the possible sentences with respect to different starting points
t W

are contained in the generated languages.

If a noisy picture Is unfortunately distorted at a certain b)reaking point,

the descriptors of the two related curve segments may be badly affected,
r

because the direction of the two ends of a curve segment affects the feature

values of the descriptor. In such cases, the machine may misrecognize. The

solution is to utilize more than one set of segmentation. If a breaking point

with respect to one segmentation Is distorted badly, it can be passed around

by another set of segmentation, because It may not be the breaking point in

that segmentation. The noise occured not at the ends has little effect. In

this experiment, each of the grammars utilizes essentially two sets of

segmentat ion.

A less noisy shape may be recognized by more than one set of segmentation.

In other words, there may be more than one derivation for a sentence. This

Intended ambiguity [11 Increases the recognition power for noisy shapes.

Nine noisy shapes have been tried against three grammars, three models

of airplanes, with the modified Earley's parser. All of the 27 tests were

correctly accepted or rejected.

p.
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The following pages are the shape grammars, and their corresponding seg-

mentation graph. The nine noisy shapes are shown in Figure 4.7 - 4.15. The

small circle at the bottom of each shape Indicates the starting point of the

boundary vector chain.

REFERENCES

(1] K. S. Fu, Syntactic Method In Pattern Recognition, Academic Press, 1974.

[2] K. C. You and K. S. Fu, "Syntactic Shape Recognition," ARPA Quarterly
Report,

[3] A. V. Aho and J. D. Ullman, Theory of Parsing Translation and Compiling,
Vol. 1. Parsing, Prentice-Hall, 1972.
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The shape grammar~ for AIRBUS, b=(b b b b

b ' Nbi I 1 45)

TbatpbjP Abk' 1j 44 2 2 1 -ck A&10

(1) Sb-, NbAblFbA bNb2 Ab3NbAb3Nb4Ab 2 Fb2 AbINbSAb4

(2) Sb- FbA2 ZbN3bN4bFZb~5bNlb

(3) Sj- N b2 ANbAb3Nb4Ab2Fb2AblNbSAb4NblAblFbl Ab 2

(ii) Sb4 Nb3AbN b4Ab2 Fb2Abl Nb5Ab4NbAbl~blAb 2 NbzAb3

(5) Sb7)NbAbFb 2Al~bAb94 "bAblF lAb 2bbAb

(6) S-t '4Fb2 AblNbAb4NblAblblAbI2z% 2 Ab3Nb 3 Ab3Nb4Ab2

(7) S-' -"NbS#b4NblAblFblAb 2 Nb2Ab 3 NbAbNb 4 Ab 2 Fb2 Abl

(8) Nb 4 b3AbSFb4Ab6Pb 5 Ab?Fb6

(9) Nbl-) F PbAb8Fb8Ab F b6

(10) Nb2 Fb9 Ab 9 FblOA bl0Fbl

(11) Nb4 FbF 12 AblO~bi .Ab 9 b~

(12) Nb3,*Fb1SAbiFbt6

(13) NbS5i' "b1 Ab? F bi8Ab6Fbi 9Ab5Fb2O

(14.) NbS-oF bi7Ab7Fb2lAb8Fb22
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Fi0
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* Fig. 4.1
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?her- ishape grammar for DC8,* Gd V do T do Pd. Sd

(1) S do N Adi 1 1 4 " 15)d 4 Ad

d(2) Sdl NAdAdk J( 2 7,Ad 14Ad4 d 12

(J) dl d A d A , d~ lN 2 d~l d

*(5) s d ds.dNNdl A dlNd2Ad2 FdlA 2NdAdld

(6) S d. -vN d2Ad2 FdA d2 N dAdNdAdNdAI

(3) d~ NdlA d2 N dAd4Nd6Ad3FdiA djNd?
(8) N~~*d9 AdSAdl

(9) Nd ~N d9 AdN dAdN j
(% 0) Nd9 2ANdl 2Ad6d2

4 ~(1) sNd~~dAd

(12 N2Fd~kd8FdjAd6Ad Fd Ad"3d

(3) sNd--O Nd6Ad2 Fd 9Ad"-A4dA3Nd5d

K(8 1 ) d*N .~dlAd Ndll
(9s) NdZ~fdAdiZdl,

d9d

(10)-N .
do-'*Nd2Ad6 .

(11) P ASd1I3 7d
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(1?) Nd 3 -> P4 1t 5 Adl 2 Fd1 6  .

(118) N 4 7 - Fdj5 Ad 2 dl 7

(19) NdAI Nd 1 3 Ad 5 Nd 4

(20) Ndg-,, Nd15 Ad5 d14

(21) Nd j'*Fd±8Adl OFdi

(22) Nd4 570,Fd 22 Ad6 N4 1 S

(21e) N41 -,, Fc2?d9Fd24Ad8Fd25

(25.) Nd 15 -' Fd2 6 Ad7Pd27
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The shape grammarforBA1-1 -11GoVT P.S)
VC C C CC

LC F A cki1 16j A159 47

PC

(2) S c---N2A 2F1 A cN 0 AcNcAc3 N0 1 A0

(3) S ---?4P~1 A 2cAcA3 ~~ 2Ac

() S Nc AclN Ac NAcc PAN cAc2vW

(5as --.,c4Aclc,c2c2 clAc2 c3Acl

(6) S-.-N 6 A 2 FcA N N 0 ccAC NOc

(8) N.-CPFv

- (12) N 0 ,-->Fc2A07F 10 06F 11

(10) N 07--'lFc5Ac6 c60 0A0 F

(12i) N011 - 9~01 A 05F 1  c6

(15) Nc 8 *F-I,- 5 A0 5 Fcij
c5p
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IMAGE CLASSIFICATION EMPLOYING STATISTICAL CONTEXT

E. F. Kit and P. H. Swain

INTRODUCTION

Useful information from remote sensing data is obtained by accurately

classifying each region in the Image. In the past, work dealing with the

computer analysis of Image data collected from high-flying aircraft and earth

orbiting satellites has focused on classifying each point in the image (on

the ground) in terms of its spectral variation in electromagnetic field

strength. Spectral classiflers generally classify a single Image point based r

solely on data associated with that point.

Recently the focus has been broadened to employ spatial relationships in

the data. Even an amateur photo interpreter would concur that this informa-

tion component is substantial. For example, automobiles occur more often on

highways than In water, and boats are more often In water than on highways.

I S
Then, even If their spectral appearance is the same, boats can be discrim-

inated from automobiles if their context is considered. The data immediately

surrounding an image point is intimately associated with it and can be used
S

to throw light upon Its true nature.

One approach to the statistical treatment of context was suggested by

Welch and Salter [1]. However their basic assumption (made in an effort for
S

a practical solution) was that contextual relationships between nonadjacent

cells are negligible. They later went on to make extensive comparisons be-

tween the recognition performance of a four neighbor rule and an eight neigh-

bor rule.

The model we have formulated is based on a significantly different ap-

proach to spatial dependencies. Contextual configurations of arbitrary shape

(see Fig. 1) can be dealt with by ou, model and statistical dependencies
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extracted from a typical scene used to classify a new scene are less complex

and more readily determined than those required by the Welch and Salter ap-

proach. The block diagram shown'in Fig. 2 summarizes our Initial experiment

and in the next section we focus on context extraction.

Fig. 1. Contextual Neighborhoods of Arbitrary Shape

Con text Extraction

Recall the context classification class discriminant function as develop-

ed in the previous progress report:

pU

, i-I

e1=n

where 01 and X are respectively the state and measurement of the ith cell in

the p array and 61 and X! refer to the cell being classified.

Tabulation of the frequency distribution, GP(B), for typical scenes of V

Interest began as a challenging problem because of the growth of memory re-

quirements due to large window size (context neighborhood) and large number

of classes. Consider the pixel array In Fig. 3 and the simple case where the

context window size Is three and number of classes Is two as shown in Fig. 4.

U.
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Choose Area

Standard Classification

Simulate Extract G"S

Data Context

Create Create -

Mean Vector Covariance

File Matrix File

Context Classifier

Context Classifier

and

Evaluation

Fig. 2. Block Diagram of Initial Experiment

S

L 5
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To tabulate the frequency distribution, the specified window is placed over

the pixel array beginning in the upper left corner. A count associated with - *

this combination of classes inside the window is Incremented. The window is

moved one pixel to the right, and the process repeated until the specimen

pixel array has been exhausted. r *

The simplest solution is to reserve memory for each possible combination

and to store the associated frequency. Consider the fairly typical situation,

however, in which the window size is nine (three by three neighborhood) and r u

the number of classes is seventeen. Each three by three block can take one

of 17 to the ninth power (or 120000000000) possible configurations and the

simple approach is obviously infeasible. r "

A F A A

F A F F Aand F represent
distinct classes

F A A F

F A A A

Fig. 3. Sample Pixel Array for Frequency
Distribution Determination

Note that a given scene, having finite size, must contain only a small

fraction of this huge number. For example, consider classifying a 200 pixel

by 200 pixel scene. In the worst case there are 40000 different combinations p

present. Many of these 40000 will be repeated often, further reducing the

number of unique combinations. Only combinations which actually occur need

be stored. P

p S
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Window Size - 3 Possible Configurations _

Number of Classes - 2 X X X

A A A

A A F •

X A F A
A F F

X2  F A A
F A F

F F A

F F F

Fig. 4. Sample Context Problem

Figure 5 summarizes the presently Implemented approach. Each time a

conbination is obtained, the binary tree is traversed until the combination r *

is found or until a null node is encountered. If the combination Is already

containeu in the tree, the count associated with that combination Is incre-

mented. Otherwise this is the first time this combination has occurred, and I

therefore a new node is added to the tree and Its associated count is

initialized to one.

For our first frequency tabulation, the frequency distribution was de- i _

termined from a classification Mll columns by 251 lines. The total number of

nodes In the final binary tree was found to be 18502. The ratio of the actual

number of unique combinations to the possible number of unique combinations S

(a function of scene size) provides an Indication of the "amount" of context

in the scene. In this case our "scene context ratio" was:

scene context ratio - 18502. - .65

114 x 251

p 6
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a. Classification Results File - ,

1. Input b. Window Configuration

c. Image Size

2. Get Combination

Combination Found

a. Increment Count

3. Tree Null Node -

a. Create Node

b. Count - I

4. If More Combinations Go to 2

5. Print Tree Using Inorder Traversal

Fig. 5. Binary Tree Implementation _

The scene context ratio is always greater than zero and less than or

equal to one. For a scene with frequently occurring combinations, the numer-

ator will tend to be small, resulting in a low scene context ratio and In-

dicating a high-context scene.

Context Classification and Evaluation

The Context Classification algorithm Is a supervised classification

algorithm since it requires training samples representative of each class of

Interest. in our approach, the classes are assumed characterizable by

multivariate normal probability density functions. Therefore the training

samples are. used to estimate mean vectors and covarlance matrices for each

class.

I
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The goal of the Context Classifier is exactly the same as the familiar

Maximum Likelihood Classifier (MLC) and Is shown in Fig. 6.

nxmxv nxm

R TR
Fig. 6. MLC and Context Classification Goal

The number of lines, columns, and channels In the Image are represented by n,

m, and v respectively. These classifiers are responsible for assigning a

given Input pattern to a class by comparing the feature vector with a set of

training patterns. The common performance measure among Context and con-

ventlonal ML Classifiers Is "minimum probability of error".

The important Input difference which distinguishes the Context Classi-

fier is shown in Fig. 7.

q rQ

number
of

channels
number
of

channels

MLC CONTEXT

Fig. 7 Input Difference Between Context
and ML Classifiers

,
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For the full window shown, where q - r - 3, the Context Classifier Inputs

nine times the information per point of MLC. As mentioned earlier, any sub- 46:

set of the full window may be easily used, and if q - r - 1, the Context

Classifier Is precisely the same as the MIC.

Software supporting the Context Classifier has been developed and is -

currently under test using multispectral remote sensing imagery. Results of

applying this approach to classification, including qualitative and quantita-

tive comparisons with MLC results, will appear in the next progress report.

REFERENCE

[1] J. R. Welch and K. G. Salter, "A context algorithm for pattern recogni-
tion and image interpretation," IEEE Trans. on Systems, Man and Cyber-
netics, Vol. SMC-l, No. 1, January 1971.

* ,

p 5
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A SPATIAL STOCHASTIC MODEL FOR CONTEXTUAL PATTERN RECOGNITION

T. S. Yu and K. S. Fu

Abstract r 0

A contextual classification algorithm using a spatial stochastic model

(Markov random field) is proposed. The requirements for the joint probab;l-

4ty function on the two-dimens 4onal lattice are discussed. The distinction r *

between the spatial correlation context and the transition probability con-

text is made. Conceptually clear procedures for construction of the model

are given. The coding technique for parameter estimation is presented. An r

extension of the model in the multivariate site variable case is derived to

handle the multispectral satellite data. Experiments with remote sensing

data are performed and results are compared with simple (no context) rule .0

results. Less frequently occurring classes such as highways and commercial

areas were found to be classif 4ed better using the contextual algorithm with

only a reasonable increase in time computation. I 6

1. Introduction

Compound decision theory has enabled us to introduce contextual 4nfor-

mation into the statistical decision procedure for image interpretation.

Based on initial success in using context information M1], [23, the investi-

gation has been extended and is going beyond the simple (no context) clas- U

sification to improve the decision procedure in areas where the need is

clear and the possibilities are promising. 'The'outcome of this investiga-

tion has been a conclusive demonstration of the feasibility of applying a

spatial stochastic model to analyze digital satellite data. The effective-

ness of this model was demonstrated by the minor increase in computation
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time and the improved classification results. Some modifications and exten-

s4ons of the model were specifically developed or substantially refined dur-

ing this investigation to cover more general situations. A wide variety of

agricultural areas and urban residential areas were chosen for experiments.

Other classes in the satellite data include pastures, forests, water bodies

and highways.

2. Proposed Approach r

Under appropriate assumptions, the derived compound decision rule E2)

is to choose action a c A to minimize

4
'-L(eka)P(Xk/ek)G(ek) f x-P(xk k )P(eklek) (1)
k 1 ek.

where ek c e is the kth class, xk is the pattern vector of cell k, G is the

a-priori probability function and L is the loss function. Suppose we let
4

GlCek) = G(e P(xk lek )Pek ek). The decision rule (' becomes .1 kk 4=1 ek. • i kI k-- ;
8k.

x L(ek,a)P(xk/ek)GI (ek) (2)
ek

Rule (2) is of the same form as the simple decision rule except for the a- 

pr4ori probability G(k). Note that G(ek) is now the probability of oc-

currence of the four nearest neighboring states of ek together with that of

e Since the neighboring states are unknown, we have to obtain the proba- -

bil 4ty of the neighboring patterns belonging to each individual class and of

each individual class being a neighbor of ek* The four multipliers in the

product term in (1) represent the contextual contributions from the four .

neighboring cells. Context information in terms of directional transition
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probabilities is introduced in this decision scheme.

The first problem with this scheme is the validity of the estimated

directional transition probabilities from training data. Usua!!y the ground

truth information ;s never known W4th certainty, especially with satellite

data.

Another problem is that we assume the contributions from the four

neighbors are independent. In real situations this is not generally true,

for example, agricultural areas are usually present on both sides of a

river.

Instead of using the transition probab4l 4t4es, we are interested in us-

ing the correlations between different patterns since the correlation-type

context does not require us to know the true classes of the patterns. In

particular, we would like to obtain the joint density function of ek and its

four nearest neighbors (Figure 1) because the joint distribution function

K1 1

K7  K2  6

K K K K1  K1012 3 1 1

K8  K4  K
8 4 5

K9  -

Figure 1. Order of neighborhood of cell K.

contains all the correlations between all pairs of cells. In later class'f-

ication processes we shall concentrate on the observation vector

* Xk = (xkxk ,xk ,xk ,Xk ) instead of just on xk to classify cell K.

Notice that this joint density funct4on must be defined consistently. *

When we try to classify cell K1, we need to use the same jo4nt density

structure as when we classify cell K. This implies that the marg.tal joint

1
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distribution functions of cells

K k-

K2  k2

K3 Kk K1  k1

K k
4 4 r

Figure 2. Two NB (nearest neighbor) system samples

overlapping. r

XkXk should be the sah.. as those of cells XkXk (see Figure 2). In the
1 3

Gaussian case, this means that the var4ances of cells K,K1 ,K, are all the

same and that the correlations between K,K1 are the same as those between

K,K In general, we must require that the labelling of the different cells

should not affect the definition of th? joint density functions for these

cells. Also we must require that all the var iance-covar~ances be distance

dependent but not position dependent. For example, (see Fig. 1) the covar4-

ances between cells KK 8  should be the same as those between cells KIK 4

since the distance between e4ther pair is the same. This requirement s-

commonly known as "statonarity".

We need to construct a two-dimens4onal random process w4th the sta-

tionarity property. In particular, we are mostly interested in the Gauss4an .

plane process because the gauss'an density functions can be specified by the

second moments. Th4s means that we should be able to specify covar 4ances

between any pair of cells (or sites) in the lattice after constructing the

stationary random process.

I 1P
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3. A Markov Process on a Torus

The procedure for constructing a two-dimensional stationary process is

similar to the one-dimensional case. Here we first construct a similar pro-!

cess on a lattice torus in which all random variables, xmn, are identically

normally distributed and satisfy a Markovian property. Then we let the size

of the torus tend to infinity to form the stationary plane process. Let the

torus be defined by all pairs of integers (j,k), j=O,...,p-1, k:O,...,q-1

where p and q are identified w4th zero. There are pq random variables Xjk

at points (j,k) and we suppose that they have a joint normal distribution

with the density function

p(-) = K expE~ x 2

jk

I 0
+ a xjk(X j+l,k+xjl,k+Xj,k+1 +xj,k-1)}J]

where lal < -1 and K is a constant. The quadratic form inside the brackets
4,

can be shown to be positive definite.

This torus process has been discussed separately by Besag [3 and Moran

[4]. Besag presented a conditional probability approach to specify the spa-

tial process and derived the joint density function which is equivalent to

(3). Here we follow Moran's procedure for constructing the desired plane

process since it is briel and clear.

We now find the variance-covariance matrix of the distribution of the

X's by inverting the matrix of the coefficients of the quadratic form in

(3). We write the pq random variables as a vector X equal to

(XooXol,...,XO,qxl, X We write the matrix Q as p

(C v 2) where C 2s the element in row ulq+v1  and columnU1-U2,1 v u1-u2,v1-v2

u2q+v2  where u = 0,1,...,p-1 and v. = O,1,...,q-1 and their sums and
2 v

Dp
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differences are taken modulo (p) and (q) respectively.

We construct the matrix Q as follows. Cons4der the p x p circulant ma-

trix

y 0 . . .
y x y 0 0Y : : I
I,. 0 0 • 0 y

LL

and replace the x, y and zero by A, B and zero q x q matrices respectively

where A is the p x p matrix

[.[ laO -. *

a 1 a *.0

r0. a 0

0 a 1 0

l a 0 • a I-

and B is a p x p diagonal matrix with a's down the main diagonal. Notice

that the Q matrix here is exactly the same as Besag's B matrix in h4s paper.

Next we can do a unitary transformation to diagonalize Q in order to

find its inverse. We only give the final result here. Write Q = (bst)

where s = ulq+vl, t = u2p+v2. Then

bst = (pq)- 1 exp 2,i{ulu 3 p-
1+vlv q-1 }

( C1+2a cos 2w v3q-1 +2a cos 2w u q-1 1

-1 -1

exp -2wi{u 2 u P +v2v3q 1 (4)

where m = '3q+v3.

p.
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This is real and is the variance-covariance matrix of the random variables

on the torus.

4. A Rarkov Process on a Plane Lattice

Our goal is to construct a stationary Markov ian Gaussian process on the

lattice formed by all positive and negative integers (m,n). To do th's it

is sufficient to define such a process for all finite sets of such points

provided the resulting disti'bution is invariant under translation (con-

sistency requirement). It is therefore sufficient to consider any fixed

finite set of points on the torus lattice and then let p and q tend to in-
-1 -1 r w"

finity. Writing exp 2vi u3p = 1 and exp 2vi u3q = z2 and letting p,q

tend to infinity, we find that the covariance Vs t between xmn and xm+sn+t

is S

-11 s-i 1f f1 2
-1 A'
2-1 -1 Zz

4w 1Z 1 1=1 1Z 2 1=1 (,+a(z1 +z1 )+a(z 2+zz2 )3 1 2

with the convergence being uniform on the finite set of points.

We can obtain the covariances explicitly from the integral

2w 2w cos so1 cos to2  ( )
V s't 2 f f 1+2a cos el+2a cos a23 deIdo2 (6)

V0 0 can be obtained (43 analytically as
2 2

Vo,= 2w f (1-16 a sin2e do (7)
0

which is (2) -1 times the complete elliptic 41ntegral of the first kind, ta-

bulated in Abramowitz and Stegum 15J.
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V V V V 1 -10-1 01 10 -10 00 (1-Vo)

Other values of Vst, which are known as the lattice Green's function, are

much more complicated to evaluate. We used summations to approximate the

integrals 4n (6) to obtain V0 2 and Vll for our NS system. r *

5. Estimation of the Spatial Correlation Parameter

The parameter "a" in (3) is unknown and must be estimated from training r

samples. There is more than one way to do the parameter estimation, for ex-

ample, see [33 [63. However we will describe a coding method which is very

flexible and simple. r S

We have mentioned that Besag used a conditional probability approach to

define the torus process. Specifically he derived the most general (but con-

sistent) conditional distribution function and went on to arrive at the

joint distribution for all cells in the rectangular lattice. The condition-

al distribution he derived was P(xk/all other sites) = (2w
*-1 -2 (x j2}]

explo- -XkEk O k(x ul) ). dle rarkov definition used for defining I .

this process was

P(xk/all other cells)

= P(xk/4 nearest neighboring cells k)

In order to fit a first order scheme, we begin by labelling the interior

sites of the lattice, alternately x and., as shown in Figure 3. It is

p "5
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*x * x * x * x

x * x * x * x

*x * x * x * x

x x * x * x

Figure 3. Coding pattern for a first-order (NB) scheme.

immediately clear that, according to the first-order Markov assumption the

* variables associated with the x sites, given the observed values at all oth-

er sites, are mutually independent. This results in the simple conditional

li keli'hood,

R p(x.i~ /Ix.iljx+,~;jlx, (9)

for the x site values, the product being taken over all x sites. The cond4-

tional Maximum Likelihood Estimate of the unknown parameter can be obtained

in the usual way.

The defined process requires that every var 4ate (associated with each

cell) be identically normally distributed. However, in practical situations

such as our satellite data, there are many classes appearing in the image

and they are statistically characterized by different mean vectors and co-

* variance matrices. For the s4ngle-var4ate site variable case discussed so

far we may easily normali4ze each pattern so that every var4ate has zero mean

and unit variance. in the multivar4ate-S~te variable case, we have to take

i nto account other considerations. These are discussed below.
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6. Multivariate Site Var 4able Extension -

We will consider the two-var4ate site var 4able case and then the more

than two-variate case can be generalized by straightforward extens4on. Ima-

gine that we have, at each site, two variates for the NS scheme (Fgure 4a).

x x

k
2X k x k 1

Xx8 X X
k3  Xk, xx k

Xk4
Xo
xlk 4

I
Figure 4a

Cxk +CX C I +C2Xvk

X C X -k-

X XC X k +C2 X -"

Figure 4b.

It is now necessary to construct a 10 x 10 covarance matrix to incorporate 6

all kinds of correlations between these 10 var4ates. However, only the

correlation between one var4ate of one site and another var 4ate of another

site is unknown. We have to find this correlation to form our covar 4ance

matrix.

Consider the 1 dimensional NB scheme in Figure 4b where every var'ate

is obtained from a linear combination of the two variates at every site in

Figure 4a. The process in Figure 4b must preserve the original Markov pro-

perty of the one-dims4 onal process d4scussed earlier. In other words, all
0
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the variances and covariances between sites n Figure 4b can only undergo a

scale change from the one-dimensional case such that the overall covar4ance

structure has the same form and can be obtained from (6) with some other

correlation parameter "a".

The variance of site k in Figure 4b is c 2+?2C2E[X Therefore

'2

the variance is increased by a factor of c+c 2 +2c c2EEXkXkI (remember the

original variate had un4t variance). The covariance between site k and any

2 2 EEXk,Xk')
other site say , EEXkX {c1 +c 2+ c1 c2  EEX } since

EExk,x I = E[xk,XLI and E[XkX I = Ex xkJ.

In order to have the same scale change for the covariance as for the

variance, we must impose

EEkx x 1

EEXk,Xk) = Ek (10)

This will enable us to construct our 10 x 10 covariance matrix. Another

consideration worth not4ng is the normalization process for the multivariate

case. An orthonormal transformation is required to transform the variates

into zero mean and an identity matr4x as their covar 4ance matrix. This is

also called the "Whitening process" (73. The transformation matr 4x is

T
* where is the eigenvalue matrix and o = (41,O2] is the eigenvector

*matr 4x for the covar 4ance matrix of the particular class the pattern belongs

to. After the orthonormal transformation, each site will have two uncorre-

lated variates with zero means and unit var4ance. This will make our

overall (10 x 10) covariance simpler because of (10). The 10 x 10 covari-

ance matrix for the 10 var 4ates in the NB system (Fig. 4a) would be

1

.1
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I = [z 8](10) _10 0 '--

where 41s the 5 x 5 covar 4ance matrix of the 1-dim NB system w4th elements
B

evaluated from (6) once "a" has been estimated. "

It is not hard to show thatll is positive definite since we have
10001

guaranteed that ' 4s pos4t4ve definite. General4zation of the more than

two variate site variable case can easily be carried out. r

7. Experimental Results

The classification procedure (contextual) requires us to know the four r

neighboring classes in order to evaluate the joint density function. We may

not need the true class but some class knowledge of those neighbors ought to

be known. We obtained these classes by doing a "preclassification" using

the simple (no context) decision rule. The contextual classification w'll

then be called the "postclassification".

The data used for the experiment is the satellite data of Lafayette,

IND under Run No. 72053609 provided by LARS*. Usually four spectral bands

are used to collect Satellite (LANDSAT) data (except for Temporal data).

However, it was found that two bands (one from the infrared region and one

from the visible region) are enough to produce maximum feature separation.

The two bands used are band 3 (0.7-0.8 ,M), and band 6(0.6-0.7 UM).

The lack of large homogeneous areas in the LANOSAT data provides great

difficulty for training and testing purposes. There are seventeen classes

in our data. Their statistics-and the two band (3,6) ellipse plot are shown

4n Figures 5 and 6 respectively.

We decided to use the detailed analysis results performed by the LARS

professional analyst to do the estimation. The coding parameter estimation

ml m i ~ l~ / l )ll /l/ ld ~ dld d d . ....
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A 3CLASS 1 HI!wiAY
*C* C*b =CLASS 2 A6,2-1

*C.. a*. C =CLASS 3 AG,4-Z
*Eo. OU CLASS 4 AG?-3

* E. OF= CLASS 5 AGP-4
*F* 03 F CLASS 6 A62-h

*4 G =CLASS 7 AGj;-7
h. CLASS A PA5T-WHT

*J* *J* I z CLASS 4 AS
OK Of, = CLA )S 10 rPAST2- 1
*LO~~ =L CLASS 11 FO, 2-11

*OA*..L = CLASS 12 rO'R2-13
#4 = CLASS 13 C041-1 5

Co. N CLASS 14 RESI-3
.*P* 0 aLLASS 15 RESI-7
O~ijo P z CLASS lo DARK AG

Chan. 6 .6-.70a# Chan. 8 .8-l.luMi 0 a CLASS 17 W~ATER~

Figure 5. Cospectral Plot.
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Figure 6. Ellipse Plot of Channel 3 Verses 6 5
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result and the evaluated variances and covar4ances are given 4n Table 1.

Band 0 00 V0 1  Vll V0 2

0.7-0.8 UM 0.228 1.489 0.5372 0.3216 0.221113 F

0.6-0.7 uM  0.229 1.486 0.5370 0.3212 0.2210

Table 1. Coding estimation result. r V

The statistics for the 17 classes were obtained by the analyst at LARS

with the aid of reference data such as aerial photography, U.S. geographic r U

maps etc. However, it is extremely hard to use this reference data to ob-

tain performance accuracy because, for one thing, 4t 4s hard to store

point-by-po4nt ground truth in the computer. Therefore we decided to exam-

ime our results visually from the posit4ve-negat4ve films.

Two areas each of size 128 x 128 were used for testing the contextual

algorithm performance. These results are shown in Figure 7,8 for block 1 6

(line 200-327, col. 120-247) and block 2 (line 73-200, col. 90-217) respec-

tively. The results are presented with the two-band and 4-band simple rule

results. It can be seen that res4den' al areas (to the left of the p4cture

in Fig. 7), forests and pastures are all classified equally well for the

three results. However, highway and commercial areas (white dots) are

detected much better in the contextual rule results while just barely V

detected in the no context 4-band simple rule results. To further demon-

strate this, Fig. 9 presents results of classes for water (r4ver), highway,

and commercial areas as they are all represented by wh4te color dots. It is

not hard to see that, with the help of context information, these seldom oc-

curring classes (represented by low a priori probabilities) are correctly

p 3
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classified. The estimated performance improvement in both block areas is

about 5%.

The computation time for the 4-neighbor (NBOR) context rule 4s less

than for the 4-band simple rule wh4le the performance is better.
I- S

*LARS, Laboratory for Applicat4ons of Remote Sens4ng, Purdue Univers 4ty,

West Lafayette, Indiana 47907.
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STABILITY OF GENERAL TWO-DIMENSIONAL RECURSIVE FILTERS

B. O'Connor and T. S. Huang

INTRODUCTION

Two-dimensional recursive digital filters have generated much interest

lately. They have the potential of saving computer time and memory. After r *

defining recursive filters from a different point of view we will present a

number of stability theorems. Here, it will be shown that any general re-

cursive filter can be mapped into a first quadrant filter. Furthermore, a

theorem will be developed which relates the stability of any digital filter

to its two-dimensional phase function. Finally, a number of practical sta-

bility tests will be presented including one which consists of checking the

root distribution of one one-dimensional polynomial.

GENERAL RECURSIVE FILTERS

A general recursive filter can be described by the following recursive

equation:

O(mn) Z a(r,s) i(m-r,n-s) - Z b(k,) O(m-k,n-) (1)
(r,s)ea (k, 1)c0- (0, 0)

where a(r,s) and b(k,l) are real finite extent arrays with respective lattice

supports of a and 1 and I(m,n) and O(m,n) are the respective input and output

arrays. Furthermore, we will assume that b(O,O) - I and that B - {(m,n)

b(m,n) 0 01 is contained in a lattice sector with center (0,0) of angle less .

than I. These conditions guarantee that for a large class of inputs equation

(1) can be solved by Incrementing the values of the indices (m,n) in such a

fashion that all values of the output can be computed in turn from a given .

set of initial conditions [1,21. In other words, the stated conditions Imply

that equation (1) is recursible for many inputs.

It is our desire to use equation (1) to Implement a linear shift-

Invariant (LSI) system on the input i(m,n). Therefore, all Initial conditions

p
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must be zero. The impulse response of this LSI system is defined by the

following recursive equation: r

h(m,n) = a(m,n) - E b(r,s) h(m-r,n-s) (2)
(r,s)eO-(O,o)

In general, the impulse response will be nonzero in some shifted lattice
F S

sector of angle less than IT. In much of the literature [3,4,5,6,7] only first- ..

quadrant arrays a(m,n) and b(m,n) are considered which is just a particular

case of the above formulation.

r S
The following theorem summarizes and extends the above discussion.

Theorem 1: Let a(m,n) and b(m,n) be two real finite extent arrays satisify-

ing (a) b(0,O) = 1, and (b) there exists a (m,n) A (0,0) such that b(mn) 0 0.

Then equation if) is recursibie if and only if (iff) F S

(1) 8 = { (m,n) : b(m,n) ,' 0 } is a subset of a lattice sector with center

(0,0) of angle less than R.

(ii) i(m-r,n-s) as a function of (r,s) does not Intersect 8* (which is the

minimum angle lattice sector containing 8) at an infinite number of

points for all (m,n).

If b(m,n) satisfies conditions (a), (b), and (i) of the above theorem, then -

it will be called a recursive filter array. Associated with a recursive

filter array is a lattice sector called * which consists of all lattice

points in the minimum angle sector containing 8. 8 can be uniquely defined -.

by two vectors

2 2
i  (M HIN !] e Z2 and 0 2  (M (2,N 2 )  Z2

as 8 = S[(ti,N I ) , (M2 ,N 2 )] 

- { (m,n) c Z. (men) - r1l81 + r2 182 , r, are non-negative real numbers

for 1- 1, 2

where Z is the set of Integers and HI and NI along with M 2 and N2 are mutually -

prime Integers.

S
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For simplicity, we shall consider recursive filters with a(m,n) - 6(m,n)

(unit pulse). Equations (1) and (2) now become _ .

0(m,n) - i(m,n) - Z b(r,s) 0(m-r,n-s) (3) .4

(r,s)c0-(0,0)

h(m,n) d 6(m,n) - r b(4,s) h(m-r,n-s) (4)
(r,s)c0-(0,O)

There exists another method of finding the recursive solution of equation

(4) which will prove useful in the forthcoming stability discussion. Define

B(wz) for a recursive filter array b(m,n) as

r s
B(w,z) Z b(r,s) wr (z)

* '(r,s)eB

This equation can be rewritten as B(w,z) = l-C(w,z) where C(w,z) is a poly-

nomial with no constant term. A formal expansion for I/B(w,z) can be obtain-

I - n 
""

/B(wz) = E [C(w,z)] h(m,n)wmzn  (6)
I-C(w,z) n-O

We have proven in reference [8] that this sequence h(m,n) is the recursive

* solution of equation (4), that is, the Impulse response of the system. The

following theorem summarizes our findings:

Theorem 2: Assume b(m,n) is a recursive filter array, hI(m,n) Is the

solution of equation (4) and that h2 (m,n) is the sequence gotten from equa-

tion (6); then hl(m,n) - h2 (m,n).

STABILITY THEOREMS

In most applications only bounded-input bounded-output (BIBO) stable

filters are of interest. For a LSI system a necessary and sufficient condi-

tion for BIBO stability is thatE (h(mn)l < - Therefore, the recursive

filter represented by the recursive filter array b(m,n) is stable if and only

If the Impulse response obtained from equation (4) is absolutely summable,
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that is, E O Ih(m,n)l < - If this Impulse response Is transformed into(m,n)¢c*

another Impulse response by a mapping of the form -

m* = kIm+k2n

n' - k3m+k 4 n

where k, c Z then it Is still absolutely summable. Furthermore, if k1 , k4 -

k o k 3 0 , the resulting sequence is Just the original sequence reordered

and thus if it is stable then the original Impulse response is.stable. More-

over, the resulting impulse response corresponds to the mapped original re-

cursive filter array by g(m,n) = b(km+k2 n, k3 m+k n). This fact follows

easily from equation (6). These observations are formalized In the following

theorem (8].

,Theorem 3: b(m,n) is a stable recursive filter array Iff g(mn) is a stable

recursive filter array where g(m,n) - b(k1m+k2n, k3 m+k4 n) where klk4 -k 2 k3  0

and k I Z.

This theorem is important because it allows any class of filters to be

mapped into any other class while at the same time preserving stability. In "

particular, if b(m,n) is a recursive filter array with 1 = S[(MI,N l)

(M2,N2 )] and D = M N2 - N1M2 0 0 then the following mapping will change

b(m,n) into a first-quadrant filter •

k I  .sgn (D) N2

k2  ft -sgn (D) M2

k3  ft-sgn (D) N I

k4  sgn (D) M

Therefore, the stability of a general recursive filter can be determined by

testing the stability of the first-quadrant filter obtained from equation (8).

0



In the literature, there exist a quarter-plane stability testing procedures

[3,4,5,6,7]. For example, any of these methods can be applied to G(W,Z) in

the below example.

Example: B(w,z) = .5 w' z + I + .85w + *lwz + .5wz 1 0 M S[(2,-), (-II)].

Equation (11) yields w - Z, z - WZ2 to get G(W,Z) - I + .5W + .5Z + .85WZ +
2 3

01W2 Z3 . Now g(m,n) can be shown to be stable; therefore, b(m,n) is stable.

Most of the stability theorems of first-quadrant filters relate stability

to the zero distribution of B(w,z) - . b(mn) wmzn. The following theorem r
(mn)CO

summarizes these results.

Theorem 4: Let b(mn) be a first-quadrant recursive filter array then it is

stable 1ff

(1) B(w,z) 0 0 Iwl 1_ , Izl <_ 1 13,41

iff

(2) (a) B(w,z) ,' 0 IwI = 1, Izi <1 [3,91

(b) B(w,b) 0 0 Iwl < I b a constant Ibi < 1

iff

(3) (a) B(w,z) 0 0 on T2 -'{ (w,z) : Iwi - 1, IzI - 11 [71

(b) B~a,z) 0 0 IzI _ I la[ I j~al 1_ )

(c) B(w,b) 0 Iwl _1 IbI _<l(IbI I)

iff S

(4) (a) B(w,z) 0 0 on T2  [7]

(b) B(z,z) , 0 on jzj < I

lff

(5) (a) B(w,z) i0 0 on T2  (8,10]

(b) B(z 11,z 12) ,4 0 IzI < I for any 11,12 C Z+ -

Utilizing parts of this theorem along with our mapping theorem we can

obtain a stability theorem for general recursive filters.
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Theorem 5: b(m,n) Is a stable recursive filter array iff

(a) B(wz) 0 0 on T

(b) (I) if D - M N2 - N1M2  0 0

B(XP1 xP2) 11 0 for [Al < I

for any p1 and P2 where

pl = sgn (D) N2 IL " sgn (D) N1 I2

P = -sgn (D) M2 I + sgn (D) M1 I2

and I Z r

(Ii) If D - 0

B(P, ) # 0 for jX, < I

and p1 = M I 1 , P2 a NI Z2 W

Theorems (4) and (5) along with some mathematical results from Rudin [101 can

be utilized to prove the following theorem,

Theorem 6: Let b(m,n) be a recursive filter array and let B(w,z) = £ h(m,n)
(m,n) 1

wm zn then the LSI system b(m,n) represents Is stable 1ff

(a) B(w,z) 0 0 on T
2

(b) B(wI) and B(I,z) have no linear phase components .

By a polynomial in z and z having no linear phase components we mean that

it has no roots on unit circle and that the phase function associated with

the Fourier transform of the sequence have no linear term.

The conditions of this theorem are equivalent to those in part (3) of

Theorem 4 for first-quadrant filters [7]. However, this theorem is much more

general because It is true for any type of filter. Hence, no longer is it

necessary to check different zero region conditions of B(w,z) for each differ-

ent type of filter as done in the past (3-7].

P Sl
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Conditions (a) and (b) can be restated respectively as (i) the Fourier

transform of b(m,n) is never equal to zero, and (Ii) there exist no linear

phase components in the phase function. Dudgeon [11] has shown that if con-

ditions (I) and (I) hold then the phase of the Fourier transform is continu-

ous, odd, and periodic. The above observations suggest the following theorem: r *
Theorem 7: A recursive filter represented by a recursive filter array is

stable iff the unwrapped phase is continuous, odd, and periodic.

This theorem is Important because it relates the phase of a two-dimension- r

al recursive filter to its stability. This will aid in our development of ef-

ficient, practical stability testing algorithms.

PRACTICAL STABILITY TESTS r *

In this section several efficient stability algorithms for general re-

cursive filters will be considered. These algorithms test the validity of the

conditions given in either Theorem (5) or (6). First, consider condition (b) g

of both theorems. Here, a one-dimensional polynomial's root distribution with

respect to the unit circle must be determined. This information can be ob-

tained by unwrapping the phase of sequences which form these polynomials. A g

very efficient and accurate phase unwrapping method has been recently devel-

oped [12]. However, It has been our observation that for a polynomial of

order less than two-hundred or so, analytic methods such as the Marden-Jury

table [13,14] test can obtain this Information more efficiently.

If condition (b) of either theorem is satisfied then B(w,z) must be

checked for zeros on T2. If there exists a point where the Fourier transform

is zero this Implies that the phase is discontinuous at that point. Now, in

most cases the existence of such a discontinuity can be determined without

actually finding this point. Consider either for u, v real numbers

4
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B (z) E E ( Z b(m,n) exp(-Jum)) z (a)
n m

or (9)

Bv(w) E E ( E b(m,n) exp(-jvn)) wm (b)
m n

If there exists a (wzo) - (exp(Ju0), exp(Jv)) with B(woz o) 0 0 then usually

both B (z) and B (w) have root distributions with respect to unit circle whichU V

vary as a function of u and v when viewed as polynomials in z and w respective-

ly near u and v. Thus if 0 < u < W (or 0 < <_ w) is sampled fine enough

so that these discontinuities can be resolved then the existence of the point

(wz o) is substantiated although the values of (w0,z0 ) are not explicitly
r

known.

The above discussion suggests the following practical test for zeros on

T2. Firsc, sample either 0.< u< w or O<v <_ w or both on a fine grid. The

intersample distance will determine the accuracy of the test. Next, evaluate

the coefficients of Bu(Z) or B (w) for all grid samples. This can be done
v

quite efficiently by employing the FFT algorithm on the rows of b(m,n) to ob-

tain the coefficients of B (Z) for u -22ri/2N or on the columns of b(m,n) to
U

obtain the coefficients of B (w). Next, some method Is used to determine the
v

root distribution of each B u(z) or Bv (w) with respect to the unit circle.

For virtually all digital filter applications these polynomials will have

orders less than a hundred so the Marden-Jury table test should be one of the

most efficient methods for determining this. If, however, the Nyquist plot

of each polynomial via Tribolet's phase unwrapping algorithm Is employed to

obtain this Information then this procedure becomes a very efficient imple-

mentation and generalization of DeCarlo's Nyquist-like stability test [15,161.

The last step of the procedure is to check whether this zero distribution ever

changes as a function of u or v; if it does vary, the filter is unstable;

p
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If It doesn't change, the filter may or may not be stable. However, if a very

dense sampling grid was used then we can be "almost sure" that the filter is G *

stable.

These tests can be re-Interpretted in terms of the two-dimensional phase

function of b(m,n). The above methods determine whether the phase contains a F

linear phase component along a series of either vertical (9a) or horizontal

(9b) lines (See figure I(a) and (bI. This interpretation suggests other

procedures which are also motivated by Mersereau's One-Projection Theorem and 1l

the Projection-Slice Theorem [17,18]. Instead of approximately parameterizing

the u-v plane by horizontal or vertical lines we can use slanted lines as de-

picted In Fig. 1(c) and 1(d). These correspond to projections of angle F u

tan (I/N) or tan - /1M) where 4 and N are the length and width of the zero-

padded b(m,n) array. These projections can be obtained by operating on the

one-dimensional arrays formed by concatenatIng the zero-padded columns and V

zero-padded rows respectively.

If these one-dimensional polynomials contain a linear phase component the

filter is definitely unstable. The accuracy of this test can be increased by P S

adding more zeros to the original array's columns or rows. Therefore, for

large enough M or N we can be "almost sure" that a given filter is stable.

Figures 2 and 3 summarize both the column and rows tests and the con- p

catenation tests.

EXAMPLES

Example: Bl(w,z) - .5w1 z + I + .85w + .Iwz + .5w2z 1

Condition 7(b)

-1 2
B (w,l) - .5w + 1 + .95w + .5w

Bl0,z) - .5z1 + 1.85 + .6z

Both have no linear phase components

1
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unstable

yes

Does either FFT each (length2k) 0' *
b mn) recursL v B(w,I) or B(I,z) no row (column) of

filter array have a linear phase b(m,n) and
component store

r S

Find zero distribution
yes pha with respect to unit

unstable omponent circle of each
column (row) in
above array

no or

Phase tarden-Jury

Increase FFT size unwrapping table (low
to desired accuracy method and moderate
limit and repeat. (high order length

If K is large enough sequences) sequences)
ther filter is almost

surely stable.

EffiLient stability altioritliis for Lwo-dir.sensional recursive filters
(row and column algorith'is).
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Ii a I . If"

yes

Does either B(w,l) concatenate zero padded

b(m,n) recursive or 8(1,z) have a no- linear phaose rows (columns) of length
l to form a one-

filter array component also find dimensional array
number of zeros

f ! and 01 respectively

which they have t
inside the unit circle

Does the one-dimensional. no array have I414!

(1M 1 4 ) zeros Inside~~unit circle •

Can increase accuracy

to any desired level
by increasing M

and repeat ing

procedure

use adaptive
phase unwrappinq Harden-Jury

for sequences table for

whose lcjnth are shorter

in the hundreds sequences
or wore

Stability algorithms for two-.dliersionul filters which require only
ore one-dimen iorial root distribution test (Concatenation alqorithils).

FIGURE 3
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Condition 7(a): [row test]

Each row was transformed via a 1024 length FFT and the root distribution

of thL resulting columns revealed that, at least for this accuracy, B (WZ)o 0

on T (Since b(.n,n) is real only approximately half the number of root dis-

tribution tests are needed). Therefore, b(m,n) is "most likely" a stable

filter array.

Condition 7(a): [concatenation test]

(i) BI(z,z-N) = .z-N-l + Iz N+I + I + .85z + .5zN+
i  r

(Hi) BI(wROw) .5w"M - 1 + I + .lw M - + .85wM + .5w21+ 2

For these to have no linear phase terms the number of roots inside the unit

circle for (i) should equal N+I and R+1 for. (ii) where 1 and N are the lengths

of the zero padded rows and columns respectively. Below is a table which lists

results of using the concatenation algorithm for different values of M and N.

The root distributions were determined via a modified adaptive phase unwrapp-

ing algorithm [241]. Notice that the zero distributions always corresponds to

that of a stable filter.

TABLE I g

M or 14 Length of Length of Ideal Zero M and N
Value I Sequence N Sequence Distribution Sequence Zero

Inside Unit Circle Distribution

12 37 27 13 13 - 13

18 55 39 19 19 - 19

36 109 75 37 37 - 37

72 217 147 73 73 - 73

144 433 291 145 145 - 145

288 -- 579 289 -- - 289
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2 -1

Example: B2(w,z) = .5w'z + I + .89w + .lwz + .5w2z"

B2 (w,l) and B2(I,z) have no linear phase term. When the row algorithm is r O

employed a phase discontinuity occurs for FFT sizes of 32 or larger. There-

fore b2 (mn) is definitely unstable. Alternately this fact can be determined

by using a concatenation algorithm. *

Concatenations of zero padded rows and columns yield (i) B2 (z,zN) =

. 5zN - + lz-N+- + I + .89z + .5zB+2 ( (w l .5w l + I + w

N 2
+ .89w + .5w2  . If b(m,n) is stable then the number of zeros inside the r *

unit circle of the above polynomials should equal N+ and 1+l respectively for

all values of M and N. The following table indicates results for different

values of M and N. A phase discontinuity appears when M > 18 and N > 12 and r S

hence, this test also indicates that there exists a (woz o ) e T
2 such that

B(woZ o) = 0 so b(m,n) is unstable.

0 0

TABLE 2 ip

M or N Length of Length of Ideal Zero M and N
Value M Sequence N Sequence Distribution S-qtktnce Z.r4

Inside Unit Circle bl~tribution

6 19 15 7 7 - 7

12 37 27 13 13 - 11

18 55 39 19 21 - 17

24 73 51 25 29 - 23 0

30 91 63 31 35 - 29

36 109 75 37 43 - 35

72 217 147 73 83 - 71

144 433 291 145 165 - 141

288 -- 579 289 - 279

Example: B3 (w,z) = I - 1.2w + .5w2 - l.5z + 1.8wz - .75w2z + .6z2 - .72wz2

+ o2718w2 z
2

U
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The row algorithm detects a phase discontinuity for FFT sizes of 128 or larger

while the column algorithm detects a discontinuity for FFT sizes of 32 or

larger. The concatenation algorithms indicate a phase discontinuity for

B(z,zN) for N = 18 and for B(w ,w) for M = 36. Therefore, these algorithms

indicate that b(m,n) is unstable.

If Ekstrom's cepstrum test (19] is applied to this example no conclusion

can be obtained for FFT sizes as large as 64x64. Hence, our algorithms are

far superior both in computation time and sensitivity than the cepstrum sta- r

bility test.

CONCLUDING REMARKS

We have presented recursive filtering from a somewhat different point of

view. A general mapping theorem has been formulated which allows any type of

filter to be mapped into a first-quadrant filter. This first-quadrant filter

is stable if and only if the original filter was stable. Several general sta-

bility theorems which relate stability to the zero set of B(w,z) have been

presented. These theorems led to the conclusion that a filter is stable if

and only if its phase function is continuous, odd, and periodic. This ob-

servation suggested several practical stability testing algorithms. Among

these are several methods which appear to be extremely efficient for high

order filters. All the results in this paper can be generalized to n-dimen- g

sional filters. Moreover, the practical stability tests can be applied to

any finite two-dimensional array to determine if its cepstrum exists by de-

termining if the Fourier transform of the array ever equals zero.

*
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SEGMENTATION OF TACTICAL TARGETS IN FLIR IMAGERY

S. G. Carlton and 0. R. Mitchell

I.INTRODUCTION

We have been continuing cooperation with Honeywell System and Research

Division in developing a system to detect and recognize tactical targets in

FLIR imagery. Although the ultimate goal is to incorporate syntactic methods

wherever appropriate and useful, this report describes statistical segmenta-

tion methods and introduces a potentially useful classification method.

Shown in Fig. 1, upper left corner, and in Fig. 3 and 8 are sample FLIR

tactical targets. These images are thermal and several characteristics apply

to active vehicles: (1) the motor is usually visible as a hot spot, (2) edges

can be detected within and along the target, and (3) the average grey level

(temperature) of the object is often different from the background. These

characteristics are presently used by the Honeywell Autoscreener System to

locate potential target areas.

The techniques described here assume that the images have been pre-

processed by the Autoscreener and the approximate location and size of each

potential target are known. We attempt a segmentation into target and non-

target pixels in the target area and proceed to look at a method for classi-

fying the segmented targets.

II. SEGMENTATION FEATURES

To accomplish target segmentation, background statistics are collected

over an annular region surrounding the potential target. Then the statistics

of the target region are compared to those of the background, and points not

matching the background are labeled as target points. As is evident from the

sample Images, grey level alone is not always enough Information for accurate

segmentation, so additional features are necessary for the process.

S
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Hopefully, once the right features are selected any points that have different

features than the surrounding background points will be part of the target. __

The two additional features are chosen to complement the grey level

Image. These are texture and edges. The texture was chosen because it seems

probable that object and background textures would not be identical, assuming 0

a good texture measure were available to differentiate among 
textures. The

edges were chosen as a feature due to the predominance of edges along the

target background interface and the fact that grey level (temperature) and r •

texture become ambiguous near the object boundaries. The edge and texture

features are shown in Fig. I at the upper right and lower left, respectively.

The edge feature is a gradient type measurement measured over a 5x5 '

window for each point. The absolute difference between the upper 10 points

and the lower 10 points Is compared against the absolute 
difference between

the left 10 points and the right 10 points. The center point is then replaced 6

by the maximum of the absolute values of these two differences. 
This process

is repeated for each point in the original image to produce the edge feature

image. Figs. 4 and 9 are also edge feature images based on the original images I

in Figs. 3 and 8, respectively.

The texture feature is derived from the max-mmn local extrema described

in previous reports [1-2]. Local grey level extrema are measured in hysteresis

smoothed versions of the original iamge using three smoothing thresholds. The

lowest level extrema correspond mostly to noise In the image, whereas the

highest correspond mostly to edges. The remaining medium level extrema are a

measure primarily of the texture in the image. These medium level extrema

locations are shown in Fig, 2 beside the original tank Image from Fig. 1. Fiq. 5

shows the medium level extrema extracted from Fig. 3.

f -



126

The texture feature image Is created from the extrema by averaging the

number of medium level extrema In every lOxiO window in the image and re-

placing the center point of that window with the average. Texture feature

images are shown in Fig. I (lower left), Fig. 6, and Fig. 10.

Ill. SEGMENTATION PROCEDURES I •

Once the feature images are produced two concentric circles are centered

at each potential target as derived from the Honeywell preprocessing system.

The Inner circle represents the potential target area and the annular region

between the two circles represents the background region. In an automated

system these circle sizes would be adaptive since approximate target size

and background context will also be available from prior processing stages.
U -

In our Implementation of the system here, the Inner radius was fixed at 30

pixels and the outer radius at 60 pixels. The background annular region must

be large enough to allow a sufficient background sample to be collected but

It must not Include target points or be so large that irrelevant background

obscures the background/target differences.

The present background statistics gathering program generates a three- I •

dimensional histogram over the original and two features for all background

points. The quantization selected allows for 32 original grey levels, 8

edge values, and 16 texture values. This background histogram is therefore

composed of 4096 bins.

Once the background 3-D histogram is completed, each potential target

point (3-D vector) is compared against its background bin. If that feature

combination occurs often in the background, the point Is considered another

background point. If the feature combination does not occur in the back-

ground, that point is labeled a target point.

The results of this process are shown in Fig. I (lower right). The

target test was done over the whole image Instead of just the Inner circle

p 5
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to give us an idea of background rejection of our process. Segmentations

using this process are also shown in Figs. 7 and 11. The segmentation results 0

using this technique are very encouraging and the potential for improvement

is also high.

Present attempts at improvement of this method include a better texture •

measure and better statistics data. The local extrema over all smoothing

thresholds contain much more texture Information than is presently retained

in our average over all medium extrema. We are attempting to develop an 9

adaptive, robust technique which would measure those texture properties most

evident in each image. The single background hlstoaam might be replaced by

looking at statistics over small windows of the background. This would allow

the background to be represented by the statistics of only a few "average"

windows. This would allow background classification as well as background/

target separation.

IV. CLASSIFICATION BY PROJECTIONS

The segmentations produced by the method previously described produce

results which are sometimes fragmented and contain drop-out and extraneous

points. A classification scheme which Is somewhat insensitive to these

variations would be appropriate. We are presently investigating the use of

projections through the segmented object to derive classification features.

This type of structure recognition method is being developed by New Mexico

State University for missile tracking at the White Sands Missile Range [3].

It has the advantage that the integration process of the projections averages

out many of the noise problems inherent in thermal images and our classifi-

cation method.

Shown in Fig. 12 are eight projections through a segmented object (back-

ground points set to zero, target points remain at their original grey level).
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The object is a tank and is shown in the middle of Fig. 12. The small circles

along the horizontal axes represent 10% area increments along the projections.

The numbers printed below are the distances between the 10% area increments

normalized so that the total distance (representing 64 pixels horizontally)

in 1000. Note that these projections retain several characteristic features

of the tank: 1) the motor h(t spot; 2) the cool region between the motor and

front of the tank; 3) the cannon barrel; and 4) the rectangular shape.

Shown in Fig. 13 are the projections through another tank from the same

aspect angle (note the similarities). Fig. 14 shows projections through a

different tank at a different angle using a different FLIR sensor. Although

shape information is extractable, this target would have to be learned

separately from the first two. Fig. 15 shows the projections through a seg-

mented APC. Here the differences between an APC and a tank are most evident

in the front of the objects. s

The eventual goal of this projection method is to derive invariant

measures (such as ratios of the 10% area increment distances) on several of

the projections (such as narrowest and widest) so that objects of interest g

can be classified.
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Fig. 5 Medium local extrema in Fig. 3 Fig. 6 Texture in Fig. 3 derived
by averaging over Fig. 5.

Fig. 7 Segmented targets from Fig. 3 Fig. 8 Twelve targets from Honey-

using original, edges, and texture well FLIR data.
as three features.
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Fig. 9Extracted edges from Fig. 8Fig. 10 Texture from Fig.8

Fig. 11 Segmented targets from Fig. 12 Projections from segmexnted

Fig. 8 using original, edges, tank (Fin. 11, block 7)
and texture.
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Fig. 13 Projections from segmented Fig. 14. Projections from segmented
tank (Fig. 11, block 6) tank (Fig. 7, block 7)

Fig. 15. Projections from segmented
APC (Fig. 7, block 4)
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REAL TIME TARGET TRACKING AT WHITE SANDS MISSILE RANGE

0. R. Mitchell

I.

I. INTRODUCTION

Research was initiated this summer between Purdue and White Sands Missile

Range to design segmentation and structure analysis algorithms that operate

reliably on tracking imagery. In order to apply the higher level information

extraction and symbol manipulation methods developed under the ARPA grant,

some lower level techniques must be developed for preprocessing, target ex-

traction, and target description. In order to accomplish these tasks a small

grant has been obtained from the Army Research Office. Thus, general pro-

cedures developed under the ARPA grant may be applied to this project while a

dedicated effort to the tracking problem is sustained by the ARO.

II. TRACKING SYSTEM REQUIREMENTS

Many applications require the precise location, orientation, and descrip-

tion of moving objects in real time. Our work at WSMR this summer has exposed

us to the special requirements of some tracking problems which are best solved

by optical imaging tracking systems.

Present optical tracking systems are usually "one concept" trackers,

using either contrast or correlation. The contrast trackers are high speed

but lack the versatility to follow a target in complex scenes. The template

matching or correlation trackers require a lot of computation for reasonable

window sizes and are not easily adapted to changing aspect angles, missile

staging, and other common scene changes.

The need for a "smart" optical tracker exists which would operate in real-

time and could adapt to target orientation and shape changes (due to staging,

visible emissions, etc.), and to partial or total obscuration of the target at

times.
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Presently, New Mexico State University, under a grant from the Army

Research Office, is developing a prototype system with some of the capabilities

mentioned. However, the technical aspects of target segmentation and structure

analysis need to be studied in much more detail in conjunction with the use of

actual video data to develop a system that is robust under the rnormal variety

of tracking situations encountered. We are presently doing this study.

III. DATA

We helped develop a system at WSMR this summer to put digitized video

data on IBM compatible format 7-track magnetic tape. We presently have 20

digitized video images representing some tracking situations. Each image is

one video field consisting of 240 by 512 points with 256 grey levels. Because

the video interlace is not used, the horizontal resolution is twice that of

the vertical. The target sections of sixteen fields are shown in Fig. 1. Each

field has been trimmed from 240 by 512 to 64 by 128. An estimate of the motion

involved can be determined from the last two targets. Thest images are the

two fields from one TV frame, so that the changes visible have occurred in only

1/30 second.
* S

Future research would include digitizing several continuous flights (e.g.,

60 fields per second for 2 seconds) and using this data for development and

testing of algorithms.

IV. RESEARCH DIRECTIONS

Our research can be divided into two major areas: (1) segmentation of

potential targets from the background, and (2) structure analysis of the seg-

mented targets.

Segmentation requires high speed processing of picture points to identify

potential target areas and more detailed processing of these areas to extract

a binary image of the potential target.

p 3
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Structure analysis determines if the object extracted is Indeed the one

to be tracked, the exact location and orientation of the object, and recent

changes that have occured In the object.

Both the segmentation and structure analysis sections will use informa-

tion obtained from previous frames that is stored and modified In real-time

to allow significant changes in the tracked object during a mission.

The segmentation of the target from the background is the most critical

timing problem for real-time implementation. At video rates, a new picture

element (pixel) arrives approximately every 100 nanoseconds. Thus either all

Initial operations must be simple or the area to be processed must be reduced

by prediciting the target location in the iamge before processing. It is our

opinion that the system would operate more accurately If the entire picture is

processed every frame. This reduces the severe requirement of accurate pre-

diction of target location in the picture and allows the system to acquire and
6

discriminate Interfering objects before they come confusingly close to the

target being tracked.

A. Preprocessing

With the large variety of incoming im-ges, it is often necessary to do

some preprocessing to make the system more Invariant to changes In lighting,

viewing angle, and resolution. It Is also useful to enhance those aspects of

the image which indicate the presence of targets (such as edges and texture of

man-made objects). We are Investigating the following preprocessing operations:

a logarithmic Input transformation, a two-dimensional median filter, a two-

dimensional human visual system (HVS) filter, and averaging.

These processes are window operations that can be performed in real-time

over the entire incoming video picture. The output of these processes will

allow the selection of suitable potential target regions for more detailed

processing.
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1. Logarithmic Input Transformation

Working with the densities (log intensities) allows the system to be more

invariant to Illumination and lens opening changes since these produce multi-

plicative effects in the intensity Image and additive effects in the density

Image. The logarithm also emphasizes the detail in the darker areas of the I 0

image which is especially useful to the texture processing algorithms described

later. The logarithm is also an approximation to the visual system's action on

an incoming pattern. Our research should Indicate whether this non-linear
p S

operation is appropriate or necessary for typical video tracking data.

2. Two-dimensional Median Filter

The median filter allows for video dropouts including single point or
p g

single line mistakes in the analog video chain or the digitizer. A simple

median filter replaces the center point of each 3x3 window with the median of

all 9 points in the window. This non-linear process eliminates high frequency

noise but preserves monotonic edges precisely. Shown in Fig. 2 (upper left

corner) is the digitized video of a cruise missile with the contrast greatly

enhanced. The results of processing this with a 3x3 median filter is shown in

the upper right of Fig. 2. Notice that the edges are preserved but the noise

is reduced and the data seems more correlated. The results of averaging the

median filtered picture over a 3x5 window are shown in the lower left, and in

the lower right is the result of averaging the original. Shown In Fig. 3 are

the thresholded versions of Fig. 2. It appears that the median filter-averager

combination works best for this data (the median filter removes bad points
p ,

before they can be smeared by the averager).

3. Two-dimensional Human Visual System Filter

It is well known that the human visual system (HVS) responds to incoming
I w

images with an approximate logarithmic transformation followed by a spatial

pp
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and temporal bandpass filtering operation. We are investigating the usefulness

of such a spatial bandpass filter in extracting objects for tracking.

A suitable filter function which is to be convolved with an input image

is shown in Table 1.

Table 1. Two-dimensional HVS Filter Function

0 0 0 0 -.25 0 0 0 0

0 0 0 -. 25 -. 5 -.25 0 0 0 r

0 0 -.25 -.25 +.25 -.25 -.25 0 0

0 -.25 -.25 +.5 +1.0 +.5 -.25 -.25 0

-.25 -. 5 +.25 +1.0 +1.5 +1.0 +.25 -. 5 -. 25 r

0 -.25 -.25 +.5 +1.0 +.5 -.25 -.25 0

0 0 -.25 -.25 +.25 -.25 -.25 0 0

0 0 0 -.25 -.5 -.25 0 0 0

0 0 0 0 -,25 0 0 0 0

The values are chosen to make computation of the fractional values easy for

real-time implementation. Because our video data has twice the resolution in S

the horizontal direction than in the vertical (only one video field is pro-

cessed at a time), the HVS filter Is modified as shown in Table 2.

Table 2. Modified HVS Filter to Allow Half Resolution
in Vertical Direction

0 0 0 -.25 -.75 -.25 0 0 0

0 -.25 -.5 +.25 +1.25 +.25 -.5 -.25 0

-.25 -.5 +.25 +1.0 +1.5 +1.0 +.25 -.5 -.25

0 -.25 -.5 +.25 +1.25 +.25 -.5 -.25 0
V

0 0 0 -.25 -.75 -.25 0 0 0

Both filters have a d.c. response 0.5 and a gain of 7.5 for a small object

*
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which just covers the plus area. The filter shown In Table 2 was used to pro-

duce Fig. 5 using Fig. 4 as the input. Note that edges are emphasized and

that the missile (above the plume) Is enhanced.

Our research should Indicate the appropriateness of such a filter and the

parameters best suited to video tracking data.

B. Region Growing Using Window Statistics

After preprocessing the input video data, potential target regions must be

extracted. Depending on the data, this task may be a simple thresholding

operation or it may be a more complex extraction procedure. We choose to

formulate the segmentation in terms of measuring statistics over each nxm

window in the preprocessed picture and assigning each window to one of several

classes.

The measurements which can be made on a nxm window range from a simple

histogram of the data points to a representation in (n)(m)-dimensional vector

space. Of course, the simplest representation that will give a proper seg-

mentation is the most desirable. This selection can only be made after ex-

perience is gained by segmenting a large amount of typical tracking data.

Once a window parameter is selected, points must be clustered to give

appropriate regions. This clustering must be based upon some distance measure

between two window parameters. We are investigating the following window

parameters, distance measures, and clustering techniques:

1. First Order Measure

We are using the histogram of the points in each window as the window

parameter. The distance measure will be the Bayes error overlap between the

two modified histograms:

V
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d I 1 - ain [f(x) * hi(x), f(x) * h2 (x)] dx (1)

where h,(x) and h2 (x) are the grey level -

histograms over the two windows and

f(x) is a smoothing and normalizing function

to be convolved with each histogram

The smoothing function is chosen so that the modified histogram has an area

of unity and is smoothed so that the distance measured by Eq. (1) is not ad-

versely affected by the discrete nature of the original histograms.

An example is shown in Figs. 6 and 7. Then +Is in Fig. 6 represent the

histogram from window 1 and the O's represent the histogram from window 2.

The functions pI(x) and p2 (x) in Fig. 7 represent the smoothed histograms.

The shaded region is the Integral In Eq. (1). This area Is equivalent to the

probability of error in estimating from which of these density function esti-

mates comes a sample grey level.

The distance measure Is now used to cluster windows that are close to-

gether to form segmented regions. Prior frame Information should be useful

here to provide initial cluster groupings. Windows that are more than a

threshold distance away from all known clusters will be used to form new

clusters.

2. Second Order Measure

In tracking situations where first order measures do not allow proper

segmentation, a second order measure may be applied. We will use a modified

joint histogram relating pairs of points within a window:

p(x,y) = f(x,y) * h(x,y) (2)

where h(x,y) Is the joint histogram of pairs of adjacent

points (co-occurrence matrix) and f(x,y) is a two-dimensional

smoothing and normalizing function.
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The co-occurrence matrix has been applied to texture analysis and has

shown encouraging results. However, Instead of calculating parameters on the j *

matrix as is normally done, we will use the matrix itself in a two-dimensional

version of the overlap error measurement of distance,

d - I - ff min [P1 (xy),p 2 (x,y)] dxdy (3)

Higher order measures are probably Impractical but could be investigated

if these initial measurements show obvious shortcomings.
I S

C. Local Extrema Information

The detection of local grey level extrema in an image has shown to be

useful in texture classification and image segmentation [1]. The detection
I S

algorithm for this operation is as follows:

In a nxm window, compare the grey level of the center point with those

of its two vertical neighbors. If it is above noth neighbors, the center

point Is a local maximum In the vertical direction. If this is the case,

compare the center point with each point along each vertical direction unit

a grey level is encountered which is above the center point's value or until
* S

the edge of the window is encountered. The alrgest differences between grey

levels in each vertical direction are then compared and the smallest of the

two Is retained as the size of the local maximum in the vertical direction.

An example is shown in Table 3 for a 5x7 window.

Table 3. Sample Grey Levels for Extrema Detection

36 40 47 30 24

33 34 30 32 36

36 1.0 32 40 30

42 46 45 43 35

36 40 33 47 32

34 42 50 42 40

30 30 20 45 36



141

The center value is 45. The 47 ends the search in the top direction and the

50 ends the search in the bottom direction. The range Is 15 above and 12

below. Therefore the center point is a local maximum In the vertical direc-

tion of size 12. If the point is a local minimum instead of a maximum, the

process Is do" in the same way interchanging the above and below comparison F S

tests.

This process is also done in the horizontal direction. In the example

of Table 3, the center point is not a local extreme in the horizontal

direction. If a point is a local extreme in both horizontal and vertical

directions, only the largest of the two is retianed at that location. The

extrema detection process is equivalent to local maximum and minimum de- r S

termination following hysteresis smoothing of various amounts.

Figure 8 shows the output of such an operation on the image in Fig. 5.

Extreme size is indicated by the grey level. No distinciton is made in the S

figure between maxima and minima or between horizontal or vertical extrema.

Note that the edges emphasized by the HVS filter now are marked by ex-

trema. The missile orientation can be extracted from Its edge information,

however, the algorithm must be high-level enough so that the missile edge is

extracted and not the plume. (The missile orientation angle may not be the

same as its flight direction.)

Also the texture of various regions can be characterized by the types

and number of extrema present. The region characterization may be useful for

background classification and for plume identification. Parameters for this

measurement are extracted by counting the number of various size extrema

within a window surrounding each point.

* •

S •
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D. Edge Information

The human visual system is very sensitive to edges and lines [2]. _

Patterns containing edges are much more visible than those conta-ning the same

signal power but lacking well-defined edges. Also, many objects to be tracked

are distinguished from natural environment background by the presence of F 0

edges. It would seem appropriate that one tool which should be included in

the tracker repertoire Is the ability to detect the use edge information.

Fig. 9 shows edge intensity information extracted from the original target in

Fig. 1. A gradient operator over a 3x5 window was used.

We propose to include edge information as follows: when local extrema

occur at points with large edge values, they will be considered edge extrema.

These edge extrema can then be used as follows: (1) the presence of an edge

will enhance the possibility of a region being listed as a potential target

area, and (2) windows which contain edges will be modified so that edge points

control the window shape. Consider Fig. 10 as an example. In this figure,

detected edge points are marked with an "El. To perform a window operation,

scanning starts at the center point and moves in the numbered directions, S

stopping at an edge point or at the window edge. This allows for non-rectangu-

lar windows along the boundary of targets.

E. Extraction of Binary Images 0

The purpose of all preprocessing and segmentation techniques described in

prior sections is to produce binary images which are potential targets for

tracking. Information to be used in the selection of binary images will be:

(1) segmented regions from section B,

(2) texture information from section C,

(3) edge information from section D,

(4) prior frame information.

" . . .. .. _ " ,. * m w i ii l mwmlll i IIII i i mm| I ~m im~mllmkN llm I I I
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Our initial protocol for potential target selection is shown in the flow

chart in Fig. II.
7

F. Structure Analysis of Binary Images

The purpose of structure analysis is to find structure differences among

various targets such as airplanes, helicopters, missiles, and balloons. The

structure analyzer can operate on the segmented image from the previous sections

We are presently investigating the potential of several structure analysis

methods and will report on these results at a later time.
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A SPECIAL COMPUTER ARCHITECTURE FOR IMAGE PROCESSING

K. S. Fu and Janmin Keng

Image processing by computer encompasses a wide variety of techniques

and mathematical tools. In most image processing, large computers have been

employed. Unfortunately, the cost is high, Image processing tasks usually'

involve an extremely large volume of data, much of which can be operated on r *

In paralle!. Therefore, it is important to study special computer architec-

ture for image processing. During the last two decades the field of image

processing has grown up rapidly-. New techniques, algorithms, and applications r S

have been developed, but there is still a need for Improved hardware. A

special computer architecture Is presented here as a proposal for improving

the state of the art in image processing and also to cut costs. Designing r -

this computer architecture was a challenging problem, as the desile was to

build a computer that would have the following features:

1) The computer was to allow efficient image processing at high speed

utilizing interactive computation and making possible large data

evaluation.

2) The computer was to preserve the general purpose aspects of a general0

purpose computer,

3) The computer was to be cost effective in order to allow industrial

realization.

The framework of this proposed computer architecture consists of a task

management processor, a parallel processor, and a sequential arithmetic pro-

cessor. The task management processor is a set of software system programs

serving as an operating system. The parallel processor Is proposed because

of the parallel nature of the operations Involved In Image processing. Para-

llel machines are considered to be particularly suitable for Image processing

by Thurber ane Wald [7]. The parallel processor of the proposed computer.

p
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architecture consists of an array of microprocessors which allow parallel

processing capability. This parallel processor is a homogeneous system in

which all processors are alike and are general purpose units. The homogeneous -

parallel processor lends Itself quite readily to extendability as such systems

are usually modularly constructed. With modular parallel processing, the

system's memory, processor, and input/output modules may be enlarged as pro-

cessing requirements increase; thereby avoiding replacement of the entire

parallel processing system. The modular parallel processor also provides

very high reliability since, with several Identical modules of each types,

the system can withstand failures in several modules and still operate. This

arrangement also increases efficiency and through-put since all of the pro-

cessors could be operating simultaneously. The sequential arithmetic pro-

cessor is a microprogrammed controlled processor which performs the sequen-

tial arithmetics and also controls the input/output devices. The details of
S

these processors will be set forth in section 2. It will be shown that the

design goals were achieved through the proposed computer architecture.

PREVIOUS WORK AND COMMENTS

The previous work in the field of special purpose computer architecture

for image processing basically falls into two categories: bit-plane process-

ing and distributed processing. The bit-plane processing approach performs

the arithmetic computation on the Image points which are stored in Boolean

bit-plane. For example, if the Image has eight grey levels, then the Image

points are stored in three Boolean planes. The bit-plane processing approach

tends to have a large number of processors which perform Boolean operations.

The distributed computing approach utilizes processors which have powerful

computation capability. These processors are designated by microprogram or
ht

hardware to execute certain specific tasks. Thus, this configuration forms

I S
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a distributed computing architecture. A detailed Illustration of the previous

special purpose computers for image processing is presented in our work [I].

The comparison of those computers Is also discussed in [1].

Comparing the bit-plane processing approach and the distributed computing

approach, the bit-plane approach mostly uses Boolean operators as processors.

Boolean operators work only on binary images which are not common in the real

world. One way to get around this is to use several binary picture planes to

represent the grey scale values of picture points. But, the complex software

and additional memory requirement cause another problem and this problem

limits the processing power of the processor. One of the drawbacks of the

bit-plane processing approach fs that the processing power of the processor r .

may not be adequate for some of the more sophisticated image processing tech-

niques. For example, the parallel Picture Processing Machine PPM (now called

PICAP) has been shown in Kruse [8] to be applicable only to the preprocessing

part of fingerprint classification and as stated above syntactic techniques

have to be performed by the conventional computer In the PICAP system. Thus,

the feasibility of the bit-plane approach to perform highly sophisticated, but

Important, techniques is, at this time, unsure. The capability of real-time

processing of the bit-plane processing computers such as CLIP 3, CLIP4, and

PPM is very difficult to ascertain until more complicated techniques have

been implemented by these computers using pictures with more grey levels such

as 128 or 256.

After studying the feasibilities of the bit-plane processing and dis-

tributed computing approaches to the real world Image processing task, we feel

that the distributed computing approach Is more feasible considering the pre-

sent state of the art with respect to both software and hardware. In March

1977, Stone (6] Indicated that the distributed computing approach is one of
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the future trends for general computer architecture. His remark supports our

judgement on the distributed computing approach for special computer archi- _

tecture for image processing. A major drawback of previous computers de-

signed by distributed computing approach is that the processor systems are not

reconfigurable. The vast varieties of sensor types, applications, and image

processing techniques, require that the image processing system (especially

the parallel processor) be reconfigurable. Therefore, a generalized computer

architecture which is reconfigurable under software control is proposed in the

next section for the many applications of image processing. Not only is the

concept of reconfigure-ability new for special purpose computer architectures

for image processing, but also the methods of exploitation of parallelism is

new. in the proposed computer architecture parallelism within the task is

exploited by the parallel processor. In the meantime the operations of the

sequential arithmetic processor ;re pipelined with the parallel processor "

under programmer control in certain tasks which can be decomposed into pipe-

lined processing. Therefore, parallelism and pipelining are exploited at the

same time in the proposed computer architecture. The parallelism is referred 0

to the multiprocessing approach which subdivides each outcoming job among

many identically constructed mechanisms. The piping, or overlap is referred

to another multiprocessing approach which is to develop a collection of spec-

ialized mechanisms capable of working simultaneously to form a general purpose

organization. The processing time of the image processing task by the pro-

posed computer architecture will be sped up by a factor which is comparable

to the amount of parallelism and pipellning existing in the image processing

task of interest.

0

US
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PHYSICAL ORGANIZATION AND CONTROL FLOW OF THE PROPOSED COMPUTER ARCHITECTURE

The proposed Computer Architecture for Image Processing is called CAIP - *
and is designed using the most recent semiconductor technology. The physical

organization and control flow are as follows:

Physical Organization of the Proposed Computer Architecture

The physical organization of special computer architecture for image

processing (CAIP) comprises the task management processor, the control units,

the parallel processor, the sequential arithmetic processor, and the memory

organization.

1) Task Management Processor (TMP) is a set of software programs which al-

locate the jobs to the parallel processor (PP) or Sequential Arithmetic

Processor (SAP). The set of software programs include a task control program,

a job control program, an input/output program, and the language translation

program. The task control program provides the logical interface between the

hardware and the remainder of the software system and is responsible for the

* allocation of Jobs to the parallel processor and sequential arithmetic pro-

cessor. Each task has a tag which is designated by the programmer for the

Identification of parallel processing or sequential processing. One part of

the task control program is called the tag examination program which examines

the tags on tasks and allocates the tasks to the proper processor. Following

the tag examination, the Initiation program, which is another part of the task

control program, initiates the parallel processor or the sequential arithmetic

processor. In general, the task control program performs scheduling, super-

vision, Interruption handling, execution supervision, and clock supervision.

The job control program provides a logical Interface between a task and a job

or between a task and the system operator. The job control program analyzes

the job stream, looks at system resources, processes job execution and

U
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termination, and communicates between the system operator and the Individual

job program. The I/0 control program provides an interface between the -

processing programs and the I/0 devices. The I/0 control program performs I/0

supervision, access routine processing, and I/0 device initiation. The

language translator program translates the computer language into machine codes

and compiles the program to be executed.

2) The Control Unit (CU) consists of two sets of software programs. One

control unit (CUPP) is for the parallel processor, and the other (CUSA) is for

the sequential arithmetic processor. The CUPP and CUSA are different from

conventional processors, In that they are software programs which control the

operation of the parallel processor and the sequentlal arithmetic processor

respectively. The CUPP is a control program which initiates two different

sets of software operating systems, one for SIMD mode and the other for MIMD

mode. The two sets of software operating systems drive the parallel processor

individually upon the command of CUPP. The reconfiguration from SIND mode to

MIND mode or MIND mode to SIMD mode are performed by loading the operating sys-
I 5

tem corresponding to the desired mode. Next, the operating system is assigned

to the parallel processor (PP) by the control program of CUPP. Hence, the

parallel processor operates in either SIND or MiMD modes under the respective

operating systems. Through this arrangement, the CUPP reconfigurates the

computer architecture from SIMD to MIMD or MIND to SIMD. This reconfigurable

capability enables this computer architecture to satisfy the large variety of

applications of Image processing. The operating system of MIMD mode includes

scheduling routines, dynamic allocating routines, and dispatching routines.

The scheduling routines schedule each Job depending on Job priority and facil-

ity requirements. The dynamic allocating routines take Jobs set up by the

scheduling routines and partition the set of processors according to the needs

I V
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of each job. The dispatching routine dispatches the processors when the job

terminates or some higher priority task requires processors. The operating

system for the SIMD mode Is on the master control unit. All the processors

of the parallel processor (PP) are controlled by this master control unit and

thereby an instruction Is executed simultaneously on all the processors. The

control unit of the sequential arithmetic processor (CUSA) controls the se-

quential arithmetic processor which is a microprogram-controlled Bipolar pro

cessor. The control units are shown in Fig. 1. Note that Figs. 1, 2, 3, and

Fig. 4 form a graphical illustration of this computer architecture (CAIP) by

linking the corresponding symbols a, 0, y, a in the figures.

3) The Parallel Processor (PP) is an array of microprocessors. For the para-

llel processor, N microprocessors are connected in an array fashion. The array

organization is especially suitable for image processing [7]. The number N is

determined from the tradeoff considerations between performance and cost. The

optimal number, N, varies with the task. Hence, N can only be determined at

the time of implementation. In the framework shown in Fig. 2, a set of 64

microprocessors is used to give an Idea of the dimension of the problem. The

* control unit (CUPP) controls this set of microprocessors in SIMD or MIMD modes.

This control unit enables the parallel processor (PP) to have a higher degree

of flexibility and processing power. The SIMD mode utilizes a single master

control unit which drives the multiple processing units (microprocessors), all

of which either execute or ignore the current Instruction. This SIMD mode is

especially useful for the cases in which there exists (I) a large amount of

independent data, (2) no restrictions preventing them from being processed in

parallel, (3) a requirement for high throughput, and (4) a possibility of ex-

ploiting the associate addressing selection technique. Thus, SIMD mode is

suitable for the local task, which executes the same instruction on each

V
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PROPOSED ARCHITECTURE OF SPECIAL PURPOSE ARRAY PROCESSING,

IMAGE PROCESSING COMiPUTER
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Figure 1. Control units of designed computer architecture
for image processing.
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picture element within an image window. The MIMD mode utilizes N processors

and N memories where each processor follows an independent instruction stream.

The parallel processor (PP) is connected by crossbar switches to an inter-

leaved memory system which divides the ordinary memory into modules and the

consecutive data are stored in different modules. The interleaved memory sys-

tem is used because the bandwidth is greater than a conventional memory sys-

tem and can be multiply-accessed which Is more appropriate for parallel pro-

cessing than a conventional system, in which data can only be accessed one-at-

a time.

4) The Sequential Arithmetic Processor (SAP) is a microprogram-controlled

processor. Mini-and micro-computers are not used here because user micro-

programmable capability and Bipolar processor are not furnished by the usual

mini- or micro-computers. The Sequential Arithmetic Processor (SAP) is a

Bipolar processor which Is a processor built by Bipolar semiconductor tech-

nology and usually has the bit slicing capability. The Bipolar processor

permits the designer to define his own instruction set and the associated

hardware architecture to achieve special capabilities, such as, variable word

length capability, or to perform an application with the highest efficiency.

The Bipolar processor expands the CPU word length by cascading the needed

number of bit-slice microprocessor components. This variable word length

capability of SAP makes it more general and powerful than other micro-

processors. Along with this processor, a microprogram memory is needed to

store the microprograms of certain programs frequently in use. For the

microprograms of image processing techniques, no instruction fetching is re-

quired because of the coding of the microprogram. The microprogram capabil-

Ity saves processing time according to the ratio of instruction fetch time
4S

to total execution time. The Sequential Arithmetic Processor Is shown in

Fig. 3.



160

-S
0 - --

Data from memory

Mlcro-
program "

Control

Unit

Bipolar Processor

4 Micro- with microprogram con- •

program ml cro trolled word length

Meimory Instruction for sequentla! arith-
of
cc z *. metic calculation
pr grams

Memory Address Data Bus

Bus to Memory

Figure 3. Sequential arithmetic processor of

designed computer architecture.

IA



161
0

5) The Memory Hierarchy Organization is the memory system for SAP. The

picture is stored on a magnetic disk memory which is more economical than core

memory, but memory access time is long. The memory access time of the Bipolar

memory is faster by a factor of 100 than disk memory [9]. Therefore, a semi-

conductor Bipolar memory is connected to the disk memory as working memory 0

space and buffer. The hierarchy organization is as follows: the picture area

which is to be processed is loaded onto the Bipolar memory from the disk memory,

then the processor gets the data (picture points) from the Bipolar memory thus

allowing extremely fast memory access time. In order to avoid being delayed by

the loading time from disk to Bipolar memory, a Bipolar Memory Buffer (BMB) is

used. While the processor is reading the data into the Bipolar working memory

space, the next picture area is loaded onto the Bipolar Memory Buffer (BMB).

Thus, this memory preloading makes the data always ready in the fast-access

Bipolar memory. This memory hierarchy organization is illustrated in Fig. 4.

The prcposed memory hierarchy loads a large block of data onto the Bipolar

Buffer Memory as image processing necessitates operations on oarge blocks of

data, this ability of the CAIP through its BMB provides a marked advantage for

image processing. Once the large block of data has been loaded onto the

Bipolar memory, any individual data point can be randomly accessed and in-

dividual loading from primary to secondary storage is not needed. Thus, the

user's software becomes simpler by virtue of this proposed memory hierarchy

organization. The Bipolar memory is used here because the Bipolar memory is

the memory device with the fast fetch-time in present technology [9]. There

is only one disadvantage to the use of Bipolar memory: It is more expensive

than core memory. Instead of using Bipolar memory, core memory can be used

in the proposed memory hierarchy if the cost Is a great constraint to the

user.

mom
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Control Flow of the Proposed Computer Architecture

The control flow for the proposed computer archite(ture, CAIP, is shown -

in Fig. 5. The Task Management Processor (TMP) allocates jobs to the parallel

processor (OP) or the sequential arithmetic processor (SAP) by means of the

tag examination routine. The user's program provides a flag to the parallel f 0

processor which indicates whether the task is local or global. The locality

tester examines the flag and Initiates the SIMD or MIMD mode. The SIMD mode

is appropriate for local tasks. In this mode a single instruction is executed r

simultaneously on the Image points. The local task means that the instruction

is executed on individual data within an image window, such as calculating

the histogram of an Image window. For global task, the MIMD mode is employed. r S

The global task means that part of the task Is performing one kind of opera-

tion and other part of the task is performing another kind of operation. For

example, In the task of evaluating textured and nontextured areas, some pro- S

cessors perform second order statistical texture analysis on certain window

and some processors perform first order mean vector analysis on the cor-

responding windows. This global task comprises of two different natures of "

subtasks. The outputs from the Sequential Arithmetic Processor (SAP) com-

municates with the parallel processor. Therefore, the SAP may support the PP

and vice versa. Parallelism of task is exploited by the parallel processor 0

(PP) to obtain high speed performance. In the meantime the operations of the

sequential arithmetic processor (SAP) are pipelined to the parallel processor

under program control In certain tasks which can be decomposed into pipelined '

processing. Therefore, the control flow of this architecture exhibits both

parallelism and pipellning . This arrangement has not been incorporated into

any of the previously proposed systems. Since two types of multi-

processing parallel processing and pipeline processing, are exploited

p
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simultaneously, this contributes to high speed performance in the proposed

computer architecture. r G

ANALYSIS

Performance and Cost-Effectiveness Tradeoffs

The parallel processor (PP) of the proposed computer architecture con- [ i

sists of an array of microprocessors which are the processing elements. In

determining the optimal number, N, of microprocessors for the parallel pro-

cessor (PP), a systematic procedure is needed. Such a procedure follows: r g

In designing the parallel processor, as the number of processing elements

(microprocessors) increases, the number of data points processed by each pro-

cessor decreases and processing speed increases, but the scheduling overhead r g

also in=reases. Therefore, the processing speed Improvement reaches a sat-

uration point at a certain number of processing elements. So it seems that

the number of processing elements corresponding to the saturation point would

be a good choice. However, the answer is not that simple, as cost-effective-

ness is an important factor in the feasibility of a computer architecture.

Thus, the costs, such as hardware and software costs of the parallel processor

(PP), need to be considered. Hardware cost usually involves the hardware pur-

chased. Software cost refers to development of the operating systems and soft-

ware supports. The hardware cost increases with the increase in the number of

processing elements (microprocessors). The software cost increases more rapid-

ly than the hardware cost as the number of processing elements increases. The

best choice of optimal number of processing elements is obtained by evaluating

the performance improvement and cost increment on different image processing

tasks. The optimal number directly depends on the specifications which are

given by the user. For example, if the performance curve becomes saturated at -

80 processors for task A, and 70 for task B shown in Fig. 6, N should be in
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between 70 and 80. The hardware cost increases more or less linearly with the

number of processors (if fewer than 100 processors are bought). But, as stated

above, the software cost Increases more rapidly than the hardware cost. If the

software cost Increases sharply at 60 processors, as in Fig. 7, the optimal

number of processors, considering cost and performance trade-off, is between

60 and 80. Depending on the specifications of the user, if the concern is

more for performance than cost, then a number near 80 is chosen. If the user

is more concerned about cost, then a number near 60 should be chosen.
r g

Implementation of Statistical Methods

During recent years, a number of image processing algorithms have been

developed [2,3]. In this section, some image processing techniques are dis-

cussed in terms of the proposed computer architecture, CAIP, to exemplify the

operations of the special computer for image processing.

Statistical texture analysis has been an important topic in the field of

image processing. The texture analysis technique in [4] consists of histogram

equalization, and texture feature measurement. In applying the proposed com-

puter architecture, CAIP, to such a texture analysis technique, the task of
I S

texture analysis is assigned a tag P (which stands for parallel processor task)

by the user's program. (Tag S stands for sequential arithmetic processor task).

The subtasks of texture analysis, such as histogram equalization and texture
I S

feature measurement, are designated by the flags SI (which denotes the SIMD -

mode for the task), and MI (which denotes the MIMD mode for the task). Assum-

Ing the size of the image Is MxM. The texture analysis task is allocated to

the parallel processor (PP) of the CAIP by the tag examination routine of the

Task Management Processor (TMP). The Control Unit of the Parallel Processor

(CUPP) finds the flag, SI, for histogram equalization and loads the operating

system of the SIMO mode. Each processor of the N microprocessors then

S
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M M
calculates the histogram of an - x- picture window. The outputs of the

N fAT
N processors are then put together to obtain the equalization result of the

final histogram. The CUPP keeps the parallel processor (PP) in the SIMD mode

after examining the falg SI of the texture feature measu-. ent task. For

example, if the 88x88 picture discussed in [4] Is to be processed, each pro- f e

cessor will process the co-occurrence matrix of the window of lIlxIl pixels.

The variability texture feature measurement is calculated by each processor

as the texture value for the center cell (4x4) of that window. The mapping
r U

of the array of processors to the image points is shifted four pixels and

repeats the texture feature measurement task. When 'this shift reaches the

right edge of image, the mapping is shifted four pixels downward and the pro- I S

cess is repeated from the left most column of the image. This process con-

tinues until the texture values of all the picture points are obtained.

Syntactic Methods and Parallel Processing

As has been pointed out previously, syntactic methOds for image process-

Ing have increased In importance for certain applications. Previous special

computers such as the PPM and the PICAP are unable to process syntactic

methods by parallel processing [8]. However, the proposed CAIP furnishes the

capability of parallel processing of syntactic algorithm. In using the para-

llel processor for syntactic methods, parallel parsing schemes are most de-

* sirable as they can utilize the capability of the parallel processor. Un-

fortunately, the research in parallel parsing schemes is very limited. In this

section, we Introduce the parallel parsing of tree languages and explore the

parallel parsing of the parallel context-free languages [5].

1) Tree Languages and Parallel Processing. The parallel processor (PP) of

the proposed computer architecture for Image processing can be applied to tree .S S

grammar parsing. The parallel parsing procedure of a tree grammar is described

below. The task of tree grammar parsing is designated by a flag P and tag SI

S
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by the user's program for the effective utilization of the facilities. Through

the control unit of the computer architecture, the parallel processor is put
I. S

into the SIHD made for the task of tree grammar parsing. If a production rule

of the tree grammar which is applied to parse the language has k branches,

then each of these k branches has a nonterminal. Each processor of the para-

ilel processor (PP) is assigned by the user to parse one nonterminal. This

procedure is applied to consecutive parsing of the language until a final

parsing result is achieved. If the parsing is successful, then the language
r

(pattern) is accepted. If the parse fails then the language (pattern) is

rejected.

For example, the tree grammar is G = (V, r, P, S), where V = {S, a, b,
t r *

$, A, B1, VT = 4+a, +b, $1, r(a) (2, 1, Olr(b) = (2, 1, 0), r($)={2}and

P: [2]

rule 1: rule 2: rule 3:

4- $ A a B b

A B A B A B
o •

rule 4: rule 5: rule 6:

A a B b A - a
1 I I S

b a

This grammar generates such patterns as

(I) $
/ \,

a b
I I
b a

I

.p
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I r -

(2) $

a b

a b a b
I \
b a b a

.. ... .

b a

In order to perform parallel parsing of the tree language, processors need to

be assigned. First, the depth "dst of the tree is defined as the number of the

levels cf the tree. The depth of the tree in (1) is 2 (d-2) and the depth of
r g

the tree in (2) is 4 (d=4). The maximum number of branches for all the tree

grammar rules is easily obtained by checking the values of r in the grammar

Gt = (V, r, P, S) and this number is called m. The relationship between m
r

and r is that m Is the maximum of the values of the r's. The number of needed

processors in the parallel processor (PP) is (d)m. This procedure is per-

formed for the worst case protection concept which allows the maximum number -

of branching in each level of the tree parsing. If the number (d)m is greater

than the number of processors of the parallel processor (PP), there are two

solutions: One is the static priority procedure, and the other is the dynamic

priority procedure. The static priority procedure has a fixed priority rule

for assigning the available processors to the proper subtasks. The fixed pri-

ority rule for the parallel tree parsing scheme Is to assign the k left most
I 0

branches the equal priority in each parsing stage. The number, k, is the .

number of available processors of the parallel processor (PP) for each parsing

stage. At parsing stage one, the k left most branches are parsed first, based
I' S

on the highest priority rule. At parsing stage two, the k left most branches r

(nonterminals) of stage two then have the highest priority to be parsed. Thus,

the k available processors are assigned to parse these nonterminals.

p ",
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In the dynamic priority procedure, a dynamic priority rule h js to be

established at each stage of parsing in order to determine which subtasks have

the highest priority. For example, the k left most priority could be assigned

first, then the k rightmost priority assigned next at the request of the user.

However, in parsing the tree languages, all the individual branches (non-

terminals) have to be parsed to get the nodes (terminals), therefore, the

static priority procedure is better. The dynamic priority procedure would

only be used in special cases, such as the case in which only a partial par-

sing result is of Interest.

Using the example given above to Illustrate the proposed parallel par-

sing scheme for tree languages and to compare the parsing result with con-

ventional parsing scheme for tree languages, if the depth of the tree to be

parsed is, at most, four - the maximum number of processors needed is easily

2calculated to be (4) =16. In the parallel parsing of the Input tree a.

aU

a b

a b a b

a a b a

b a

The task is allocated to the parallel processor (PP) by the P flag found by

the Task Management Processor (TMP) and the parallel processor (PP) is placed

in the SIMO made by CUPP. The procedure is graphically illustrated In Fig. 8.

At the parsing of depth one, one processor parses the language by the rule 1. , ,

At the parsing of depth two, two processors are assigned. The number of pro-

cessors needed for the parsing of depth k Is automatically determined by the

number of branches obtained from the parsing of depth k-l. The number of 1

branches obtained from depth one In our example is two. Thus, two processors

>7
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Parsing Stage I /'

A B

Parsing Stage 2 $
a b

A B A B r *

Parsing Stage 3 $/\
a b

r .
a b a b

bA B a

Parsinq Stage 4 
$o

/
a

a b

b a bb b

(Final Result) $
a b

a b a b , .
I I
b a

Figure 8. Parallel tree parsing procedure.
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are needed, one for the parsing of the branch starting from nonterminal A and

the other for the parsing of the branch starting from nonterminal B. Grammar

rules 2 and 3 are simultaneously applied by the two processors to parse the -

two branches of the tree a starting from A and B respectively. At the parsing

of depth three, four processors are needed. Two processors simultaneously

parse the branches of A and B which are the result of parsing rule 2 in the

depth two. The parsing rules for these two processors are rules 4 and 3,

respectively, to nonterminal A and B. The other two processors simultaneously

apply rules 6 and 5 to parse the branches of A and B, which are the result of

parsing by rule 3 in the depth two. At the parsing of depth four, since there

are only two nonterminals A and B left from the parsing of depth three, two

processors are assigned to simultaneously parse the branches A and B by rules

4 and 5 respectively. Thus, the parallel parsing is completed and the tree

is accepted. The parsing of the same tree language by the conventional se-

quential parsing scheme is shown In Fig. 9. At each parsing stage, on!y one

nonterminal can be parsed by the parser. At parsing stage one, grammar rule I

is applied. Rule 2 is applied at parsing stage two. Then the rules 4,3,4,5,3,

6, and 5 are applied to parsing stages 3,4,5,6,7,8, and 9 respectively. Nine

parsing stages are needed for the parsing of the same tree as shown in Fig. 9.

It can be seen in Fig. 8 that only four parsing stages were needed for parallel
* S

tree parsing scheme. Thus, In this example there Is a saving of over 50% in

parsing stages, and, therefore, a corresponding saving in time by utilizing

this parallel parsing scheme on the proposed computer.

2) Parallel Context-Free Language and Parallel Processing. The parallel context-

free language was defined by Siromoney and Krlthlvason in [5]. The definition

of a parallel context-free language is a language generated by a context-free

grammar in whcih the manner of applying the grammar rules is restricted as

*° U
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follows: if a nonterminal occurs more than once in a sentential form, then

every occurrence of the nonterminal is replaced at the same time by the same f 0

rule.

The parallel processor (PP) of the proposed computer architecture for

image processing (CAIP) performs the parsing of a parallel context-free F O

language in the SIMD mode. From the definition of a parallel context-free

language, the number of needed processors of the parallel processor is equal

to the maximum number of occurrences of a nonterminal in all sentential forms. P S

A processor is assigned under programmer control to each nonterminal when it

occurs simultaneously with the same nonterminal in the derivation. These

processors perform the parsing of same grammar rules on these nonterminals. U S

For example, the task of parsing a parallel context-free language is

assigned the flag P and tag SI which initiate the SIMD mode for the task.

The parallel context-free language is L(G) { a2 n  n > 0} [5]. The parallel

context-free grammar is G = (V, I, PS) where V = { S, a}, I (a}, and

P{ S - SS, S a). If the languages to be parsed are aa and aaaa, The max-

imum number of occurrences of nonterminals in all sentential forms is four

which comes from aaaa (nonterminal SSSS). Thus, the number of needed pro-

cessors is four. At the first stage of parsing of the language aaaa, one

processor is assigned to parse the language and the grammatical rule is S - SS.

At the second stage of parsing, two processors apply the same rule S - SS on

the two nonterminals 'S" and the parsing result Is SSSS. At the third stage

of parsing, four processors apply the same rule S a on all the four non-

terminals 'IS". Hence, the parsing result is aaaa. This language cannot be

parsed sequentially as the language is defined to be parsed only parallelly.

The sentence aaaa of this example Is parsed by the parallel context-free

grammar G. Thus, the sentence Is accept-; as a member of L(G).

I! -



177

SUMMARY AND REMARKS

A computer architecture for image processing (CAIP) has been proposed.

This computer architecture is designed by the distributed computing approach.

This computer comprised of a parallel processor (PP) and a sequential arith-

metic processor (SAP). The reconfiguration capability of the CAIP provides *

the flexibility of this computer architecture and the method of exploitation

of task parallelism gives the high performance of this computer architecture.

This computer architecture for image processing is proposed to use micro- r

processors as the processing elements. The advantage of using a microprocessor

array is that the cost of microprocessors Is much lower than that of con-

ventional processors. The disadvantage is that the processing power of micro-

processors is less than that of conventional processors, especially in addres-

sing capability. For example, the most popular microprocessors INTEL 8080

and MOTOROLA 6800 do not have associate addressing or microprogramming abili-

ties. For special image processing computers, some processing powers of con-

ventional processors, such as associate addressing, are not essential [7].

The approach of designing a general purpose computer by microprocessors has

been controversial. But, in designing a special purpose computer for image

processing, microprocessors have their advantages. Furtherrmore, the advance

in semiconductor technology is toward the development of microprocessors with

higher processing power. The recent developments in the microprocessors

series INTEL 3000, MOTOROLA M2900, and Texas Instruments 745481 have provided

microprogramming capability to microprocessors.

With the fast growth of image processing and Its applications, the need

for a special image processing machine such as the proposed computer, CAIP,

should certainly be appreciated.
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FACILITIES

QTY Manufacturer Description
r O

3 Beehive Elect. "Super-Bee" Terminals

2 Tex. Inst. "Silent 700" Terminals

Dlgl-Data Industry standard magnetic tape

system; 2, 9-track and 1, 7-track F 
drives; one each NRZI and phase-

encoded formatters/controllers

DEC Dual-drive DEC tape unit

DEC RPO3 disk drive (40 million charac- r V

ters)

Fabritek 96K-word auxiliary memory system

(64K bought by ARPA, 32K by NASA)

Versatek Electrostatic matrix printer •

Comtal Color picture display

Data Printer 132 column, 600 L.P.M. line printer

True-Data Punched card reader I

Tektronix Model 4010, graphics display

DEC PDP 11/45 computer system, system

includes:

32K memory o S
FPP-11 floating point processor
(NSF money)

H960 extension mounting cabinet

3 - small peripheral mountings blocks
(DD-1)

1 UNIBUS repeater/expander '
DHiI, 16-line terminal multiplexor
KWll-p programmed clock
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